Ba đội máy san đất làm ba khối lượng công việc như nhau. Đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai hoàn thành trong 6 ngày đội ba hoàn thành trong 8 ngày. hỏi mỗi đội có bao nhiêu máy biết đời thứ nhất nhiều hơn đội thứ hai là 2 máy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy cày của `3` đội lần lượt là `x,y,z`\(\left(x,y,z\in N\text{*}\right)\)
Vì khối lượng và năng suất làm việc như nhau `->` Số ngày và số máy cày là `2` đại lượng tỉ lệ nghịch.
`-> 4x=4y=8z` hay ` x/(1/4)=y/(1/4)=z/(1/8)`
Đội thứ nhất nhiều hơn đội thứ `2` là `2` máy
`-> x-y=2`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/(1/4)=y/(1/4)=z/(1/8)=(x-y)/(1/4-1/4)=2/0`
`->` Đề có bị nhầm không ạ ;-;.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a-b}{4-3}=2\)
Do đó: a=8; b=6; c=4
gọi số máy của ba đội lần lượt là: a;b;c
ta có: 8a=6b=4c
\(\dfrac{a}{\dfrac{1}{8}}\)= \(\dfrac{b}{\dfrac{1}{6}}\) = \(\dfrac{c}{\dfrac{1}{4}}\)
sau đó thì cậu áp dụng tính chất dãy tỉ số bằng nhau, chỉ khác ở chỗ là phần mẫu là phân số nên cậu quy đồng rồi tính nhé
Gọi x,y,z (máy) lần lượt là số máy của 3 đội: đội thứ nhất, đội thứ hai, đội thứ ba. Vì số máy và số ngày là hai đại lượng tỉ lệ nghịch nên ta có: \(\frac{3x}{24}\)=\(\frac{4y}{24}\)=\(\frac{6z}{24}\)
=>\(\frac{x}{8}\)=\(\frac{y}{6}\)=\(\frac{z}{4}\) và X - Y= 2
Áp dụng tinh chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}\)=\(\frac{y}{6}\)=\(\frac{z}{4}\)=\(\frac{x-y}{8-6}\)=\(\frac{2}{2}\)=1
Nên:
\(x=1.8=8\)
\(y=1.6=6\)
\(z=1.4=4\)
Vậy 8,6,4 ( máy) lần lượt là số máy của 3 đội: đội thứ nhất, đội thứ hai, đội thứ ba.
đội thứ nhất có số máy là:
2.3=6(máy)
đội thứ 2 có số máy là:
6+2=8(máy)
đội thứ 3 có số máy là :
2.6=12(máy)
Gọi a,b,c là số máy của mỗi đội
Vì số máy càng tăng thì số ngày càng giảm và ngược lại
nên a,b,c tỉ lệ nghịch với 3,4,6
=> \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\) và a-b = 4
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\)=\(\frac{a-b}{\frac{1}{3}-\frac{1}{4}}\)=\(\frac{4}{\frac{1}{12}}\)=48
\(\frac{a}{\frac{1}{3}}\)=48 => a = 16
\(\frac{b}{\frac{1}{4}}\)=48 =>: b = 12
\(\frac{c}{\frac{1}{6}}\)=48 => c = 8
Vậy số máy mỗi đội lần lượt là 16 máy; 12 máy; 8 máy
Gọi \(a,b,c\) lần lượt là số máy của đội \(I,II,III\)
Theo đề , ta có : \(a-b=4\)
Do số máy và số ngày là hai đại lượng tỉ lệ nghịch với nhau nên ta có :
\(3a=4b=6c\)
\(\Rightarrow\frac{3a}{12}=\frac{4b}{12}=\frac{6c}{12}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{a-b}{4-3}=\frac{4}{1}=4\)
\(\Rightarrow a=16;b=12;c=8\)
Vậy số máy cày của đội \(I,II,III\) lần lượt là \(16;12;8\) máy .
Với cùng 1 klượng việc như nhau thì số máy và thời gian hoàn thành công việc là 2 ĐLTLN.
Gọi số máy của đội 1,2,3 lần lượt là a,b,c
Vì chúng là 2 ĐLTLN nên ta có: a4=b6=c8=>a/(1/4)=b/(1/6)=c/(1/8) và a-c=12
TTCDTSBN, ta có: a/(1/4)=b/(1/6)=c/(1/8)=(a-c)=(1/4-1/8)=12/0,125=96
khi đó: a/(1/4)=96=>a=24; b/(1/6)=96=>b=16; c/(1/8)=96=>c=12
Vậy số máy của 3 đội lần lượt là 24,16,12.
Gọi x;y;z lần lượt của ba đội (x;y;z>0)
Theo đầu bài ta thấy: số máy tỉ lệ nghịch với số ngày hoàn thành công việc
=> x.4=y.6=z.8 và x-y=2
=> x/6=(y/4);(y/8)=z/6
=> x/48=y/32=z/24
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/48=y/32=z/24=(x-y)/(48-32)=2/16=0,125
Suy ra: x/48=0,125; x= 6
y/32=0,125; y= 4
z/24=0,125; z= 3
Vậy số máy của 3 đội là: *đội thứ nhất: 6 máy
*đội thứ hai: 4 máy
*đội thứ ba: 3 máy