K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

Ta có: \(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow a^2+b^2+c^2+\left(a+b+c\right)=a^2+b^2+c^2\)

\(\Leftrightarrow a+b+c=0\left(1\right)\)

Lại có:\(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2-b^2=-a\\b^2-c^2=-b\\c^2-a^2=-c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right).\left(a+b\right)=-a\\\left(b-c\right).\left(b+c\right)=-b\\\left(c-a\right).\left(c+a\right)=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)=-\frac{a}{a+b}\\\left(b-c\right)=-\frac{b}{b+c}\\\left(c-a\right)=-\frac{c}{a+c}\end{cases}}\)

Từ (1) \(\Rightarrow\left(a-b\right).\left(b-c\right).\left(c-a\right)=-\left(\frac{a}{a+b}\cdot\frac{b}{b+c}\cdot\frac{c}{a+c}\right)=\frac{-abc}{-c.\left(-a\right).\left(-b\right)}=1\)

30 tháng 7 2019

Bạn xem lại đề nhé :

Phương trình \(b^3-3b^2+5b+11=0\)không có nghiệm dương nhé

\(VT=b\left(b-\frac{3}{2}\right)^2+\frac{11}{4}b+11>0\forall b>0\)

30 tháng 7 2019

Dạ đề đúng mà ???

1 tháng 8 2019

#)Giải :

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)

\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)

\(\Rightarrowđpcm\)

1 tháng 8 2019

Bài giải thiếu trường hợp \(x+y-1=0\) rồi

30 tháng 7 2019

\(A=\left(b+c\right)^2+b^2+c^2=2b^2+2c^2+2bc=2\left(b^2+bc+c^2\right)\) (tự hiểu nhé)

Mà \(a^2=2\left(a+c+1\right)\left(a+b-1\right)=2a^2+2\left(ab+bc+ca\right)+2\left(b-c\right)-2\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+2bc-2=0\) (*)

\(\Leftrightarrow2bc=2-a^2-2a\left(b+c\right)=2-\left(b+c\right)^2+2\left(b+c\right)^2\) (mấy cái này là từ a + b + c =0 suy ra a = -(b+c) suy ra a2 = [-(b+c)]2 = (b+c)2 thôi!)

\(\Leftrightarrow\left(b+c\right)^2-2bc=-2\)

hay c2 + b2 = -2?? hay là mình làm sai nhì?

1 tháng 8 2019

\(a^2=2\left(a+c+1\right)\left(a+b-1\right)\)

\(\Leftrightarrow\left(b+c\right)^2=\left(b-1\right)\left(c+1\right)\)

\(\Leftrightarrow\left(b-1\right)^2+\left(c+1\right)^2=0\)

\(\Rightarrow a=0,b=1,c=-1\)

\(\Rightarrow A=2\)

8 tháng 8 2021

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

8 tháng 8 2021

hình như sai đề rồi ạ, đề của em là a2 + b2 - ca - cb = 0 ạ

4 tháng 9 2016

Ta có (a + c)2 < ab + bc - 2ac

<=> ab + bc - a2 - c2 - 4ac > 0 (1)

Ta lại có a2 + b+ c2 \(\ge\)ab + bc +ca > ab + bc (2)

Từ (1) và (2) => b- 4ac > 0

Vậy PT luôn có nghiệm

19 tháng 1 2017

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3  \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2  \(\Rightarrow\)\(c^2\) chia 3 dư 2  (vô lý)
 \(\Rightarrow\)trường hợp  \(a\)\(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\)                                      \(\left(1\right)\)

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4

  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 2            (vô lí) 
  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\)\(⋮\)\(5\) 
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\) \(⋮\)\(5\)
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 3            (vô lí).                                               Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\)                                               \(\left(2\right)\)

+ Nếu  \(a,\)\(b,\)\(c\) không chia hết cho 4  \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia  8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia  8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4                             (3)
Từ (1) (2) và (3) => abc chia hết cho 60

1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/

16 tháng 4 2019

đã có lời giải đâu