Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
Tương tự,cộng theo vế và rút gọn =>đpcm
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt CÔ si
\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
.............
Bạn xem lại đề nhé :
Phương trình \(b^3-3b^2+5b+11=0\)không có nghiệm dương nhé
\(VT=b\left(b-\frac{3}{2}\right)^2+\frac{11}{4}b+11>0\forall b>0\)
\(xy+x+1=3y\Rightarrow x+\dfrac{1}{y}+\dfrac{x}{y}=3\)
Ta có:
\(x^3+1+1\ge3x\)
\(\dfrac{1}{y^3}+1+1\ge\dfrac{3}{y}\)
\(x^3+\dfrac{1}{y^3}+1\ge\dfrac{3x}{y}\)
Cộng vế:
\(2\left(x^3+\dfrac{1}{y^3}\right)+5\ge3\left(x+\dfrac{1}{y}+\dfrac{x}{y}\right)=9\)
\(\Rightarrow x^3+\dfrac{1}{y^3}\ge2\)
\(\Rightarrow x^3y^3+1\ge2y^3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=1\)
\(a^3+1+1\ge3a\)
\(b^3+1+1\ge3b\)
\(c^3+1+1\ge3c\)
\(2\left(a^3+b^3+c^3\right)\ge6abc\)
Cộng vế:
\(3\left(a^3+b^3+c^3\right)+6\ge3\left(a+b+c+2abc\right)=15\)
\(\Rightarrow a^3+b^3+c^3\ge3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3 \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2 \(\Rightarrow\)\(c^2\) chia 3 dư 2 (vô lý)
\(\Rightarrow\)trường hợp \(a\)và \(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\) \(\left(1\right)\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4
- Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 2 (vô lí)
- Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\)\(⋮\)\(5\)
- Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\) \(⋮\)\(5\)
- Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 3 (vô lí). Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\) \(\left(2\right)\)
+ Nếu \(a,\)\(b,\)\(c\) không chia hết cho 4 \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia 8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia 8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4 (3)
Từ (1) (2) và (3) => abc chia hết cho 60
Ta có: \(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow a^2+b^2+c^2+\left(a+b+c\right)=a^2+b^2+c^2\)
\(\Leftrightarrow a+b+c=0\left(1\right)\)
Lại có:\(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2-b^2=-a\\b^2-c^2=-b\\c^2-a^2=-c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right).\left(a+b\right)=-a\\\left(b-c\right).\left(b+c\right)=-b\\\left(c-a\right).\left(c+a\right)=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)=-\frac{a}{a+b}\\\left(b-c\right)=-\frac{b}{b+c}\\\left(c-a\right)=-\frac{c}{a+c}\end{cases}}\)
Từ (1) \(\Rightarrow\left(a-b\right).\left(b-c\right).\left(c-a\right)=-\left(\frac{a}{a+b}\cdot\frac{b}{b+c}\cdot\frac{c}{a+c}\right)=\frac{-abc}{-c.\left(-a\right).\left(-b\right)}=1\)
#)Giải :
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)
\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)
\(\Rightarrowđpcm\)
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
hình như sai đề rồi ạ, đề của em là a2 + b2 - ca - cb = 0 ạ