K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(1-\frac{2010}{2010}=0\Rightarrow\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)....\left(1-\frac{2012}{2010}\right)=0\)

3 tháng 8 2020

(2012.2010+2010.2008).\(\left(1+\frac{1}{2}:1\frac{1}{3}-1\frac{1}{3}\right)\)= (2012.2010+2010.2008).(\(\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)

                                                                                      =(2012.2010+2010.2008).0=0

Đây là mình làm tắt bạn có thể giải chi tiết hơn....Chúc bạn học tốt

3 tháng 8 2020

\(\left(2012\times2010+2010\times2008\right)\times\left(1+\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\right)\)

\(=\left(2012\times2010+2010\times2008\right)\times\left(1+\frac{1}{2}:\frac{3}{2}-1\frac{1}{3}\right)\)

\(=\left(2012\times2010+2010\times2008\right)\times\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)

\(=\left(2012\times2010+2010\times2008\right)\times0=0\)

28 tháng 3 2019

\(B=70\cdot\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

\(B=70\cdot\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{10}\right)\right]\)

\(B=70\cdot13\cdot\frac{3}{70}\)

\(B=70\cdot\frac{3}{70}\cdot13\)

\(B=3\cdot13\)

\(B=39\)

25 tháng 1 2019

a) (-1)^a =1 với a chẵn, (-1)^a =-1 với a lẻ

\(A=\left(-1\right)^{1+2+3+4+..+2010+2011}=\left(-1\right)^{\frac{2011+1}{2}.2011}=\left(-1\right)^{1006.2011}=1\)

Vì 1006 là số chẵn => 1006.2011 là số chẵn

b) \(B=70.\left(\frac{13.10101}{56.10101}+\frac{13.10101}{72.10101}+\frac{13.10101}{90.10101}\right)=70.\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)=3.13=39\)

c) Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)

=> C=4

20 tháng 6 2019

#)Giải :

\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{2}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\times0\)

\(=0\)

20 tháng 6 2019

\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}\right)\)

=\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).0\)

\(=0\)

29 tháng 9 2016

a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)

=> -2 < x < 1

Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu) 

29 tháng 9 2016

a) a=  2 và 1

b)    =      7

c=     5600 và 7899

d  5 và 6 

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)