Phân tích đa thức thành nhân tử:
a) (x+y)^3 - 1
b) 100x^2 - (x^2 + 25)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
a) \(x^2 (x+1)-2x(x+1)+x+1 \\ =(x+1)(x^2-2x+1)\\=(x+1)(x-1)^2\)
b) \(4x^2 -8x+3 \\= (2x^2)-2.2x .2 + 2^2 -1 \\=(2x-2)^2-1^2\\=(2x-2+1)(2x-2-1)\\= (2x-1)(2x-3)\)
a) \(4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(9x^2-\dfrac{1}{4}\)
\(=\left(3x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
d) \(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
e) \(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3+x-y\right)\left(3-x+y\right)\)
f) \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
\(a,=2xy\left(2y-x\right)\\ b,=x^2\left(x-4\right)+5\left(x-4\right)=\left(x^2+5\right)\left(x-4\right)\\ c,=\left(x-y\right)\left(x^2-25\right)=\left(x-y\right)\left(x-5\right)\left(x+5\right)\)
\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)
\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)
\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)
\(x^2-2xy+y^2-z^2+10z-25\)
\(=\left(x-y\right)^2-\left(z-5\right)^2\)
\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)
mjk sửa lại
a)100x^2 -( x^2+25)^2
=[10x-(x2+25)][10x+(x2+25)]
=(10x-x2-25)(10x+x2+25)
=-(x2-10x+25)(x+5)2
=-(x-5)2(x+5)2
b)(x+4)^3 - 64
=(x+4)3-43
=(x+4-4)[(x+4)2+(x+4).4+16]
=x(x2+8x+16+4x+16+16)
=x(x2+12x+48)
c) x^6 + y^6
=(x2)3+(y2)3
=(x2+y2)(x4+x2y2+y4)
a) \(x^2-9+2\left(x+3\right)=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x-3+2\right)=\left(x+3\right)\left(x-1\right)\)
b) \(x^2-10x+25-3\left(x-5\right)=\left(x-5\right)^2-3\left(x-5\right)=\left(x-5\right)\left(x-5-3\right)=\left(x-5\right)\left(x-8\right)\)
c) \(x^3-4x^2+3x=x\left(x^2-4x+3\right)=x\left(x-1\right)\left(x-3\right)\)
`a)(x+2)^2+2(x^2-4)+(x-2)^2`
`=(x+2)^2+2(x-2)(x+2)+(x-2)^2`
`=(x+2+x-2)^2=(2x)^2=4x^2`
`b)x^2-x+1/4`
`=x^2-2.x .1/2+1/4=(x-1/2)^2`
`c)(x+y)^3-(x-y)^3`
`=(x+y-x+y)[(x+y)^2+(x+y)(x-y)+(x-y)^2]`
`=2y(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2)`
`=2y(3x^2+y^2)`
a) \(\left(x+2\right)^2+2\left(x^2-4\right)+\left(x-2\right)^2\)
\(=\left(x+2\right)^2+2\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(x+2+x-2\right)^2=\left(2x\right)^2=4x^2\)
b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
c) \(\left(x+y\right)^3-\left(x-y\right)^3=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)=6x^2y+2y^3=2y\left(3x^2+y^2\right)\)
\(a)x^5+x^4+1\)
\(=x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
\(b)x^8+x^7+1\)
\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(#Tuyết\)
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
`a,`
`(x+y)^3-1=(x+y)^3-1^3=(x+y-1)[(x+y)^2 +x+y +1] =(x+y-1)(x^2 +2xy+y^2 +x+y+1]`
`b,`
`100x^2 - (x^2 +25)^2=(10x)^2-(x^2 +25)^2=(10x-x^2-25)(10x +x^2 +25) = -(x-5)^2 (x+5)^2`
a) \(\left(x+y\right)^3-1\)
\(=\left(x+y\right)^3-1^3\)
\(=[\left(x+y\right)-1][\left(x+y\right)^2+\left(x+y\right)1+1^2]\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)\)
b) \(100x^2-\left(x^2+25\right)^2\)
\(=\left(10x\right)^2-\left(x^2+25\right)^2\)
\(=[10x-\left(x^2+25\right)][10x+\left(x^2+25\right)]\)
\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)
\(=\left(-x^2+10x-25\right)\left(x^2+10x+25\right)\)
\(=-\left(x^2-10x+25\right)\left(x^2+10x+25\right)\)
\(=-\left(x-5\right)^2.\left(x+5\right)^2\)