K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH có BI là phân giác

nên \(\dfrac{AI}{AB}=\dfrac{IH}{BH}\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

Đề bài này chưa đủ dữ kiện để tính cụ thể AI/AB; AD/AB nha bạn

b: ΔBAD vuông tại A

=>\(\widehat{ABD}+\widehat{ADB}=90^0\)

=>\(\widehat{ADI}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\left(1\right)\)

ΔBIH vuông tại H

=>\(\widehat{HBI}+\widehat{BIH}=90^0\)

=>\(\widehat{BIH}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ADI}=\widehat{BIH}\)

mà \(\widehat{AID}=\widehat{BIH}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

=>AD=AI(3)

Xét ΔABH có BI là phân giác

nên \(\dfrac{IH}{BH}=\dfrac{AI}{AB}\left(4\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DC}{BC}=\dfrac{DA}{AB}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{IH}{BH}=\dfrac{DC}{BC}\)

10 tháng 12 2023

1+1=2

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm ,...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0
22 tháng 5 2023

Dễ thấy \(\widehat{BAH}=90^o-\widehat{B}=\widehat{C}\), mà \(\widehat{C}=30^o\) nên \(\widehat{BAH}=30^o\). Trong tam giác ABH vuông tại H, ta có \(\dfrac{BH}{AH}=\tan\widehat{BAH}=\tan30^o=\dfrac{\sqrt{3}}{3}\).

Trước hết ta tính \(\dfrac{S_{BHE}}{S_{ABH}}\). Để ý rằng \(\dfrac{S_{BHE}}{S_{ABH}}=\dfrac{EH}{AH}\). Mặt khác, \(\dfrac{EH}{AE}=\dfrac{BH}{AB}=\sin\widehat{BAH}=\sin30^o=\dfrac{1}{2}\) \(\Rightarrow\dfrac{EH}{AH}=\dfrac{1}{3}\) hay \(\dfrac{S_{BHE}}{S_{ABH}}=\dfrac{1}{3}\) (*). Lại thấy \(\dfrac{S_{ABH}}{S_{ABC}}=\dfrac{BH}{BC}\), mà \(\dfrac{BH}{AB}=\dfrac{1}{2}\Rightarrow BH=\dfrac{1}{2}AB\) và \(\dfrac{AB}{BC}=\sin\widehat{C}=\sin30^o=\dfrac{1}{2}\) \(\Rightarrow AB=\dfrac{1}{2}BC\). Từ đó suy ra \(BH=\dfrac{1}{4}BC\) hay \(\dfrac{BH}{BC}=\dfrac{1}{4}\) hay \(\dfrac{S_{ABH}}{S_{ABC}}=\dfrac{1}{4}\) (**)

Từ (*) và (**) \(\Rightarrow\dfrac{S_{BHE}}{S_{ABH}}.\dfrac{S_{ABH}}{S_{ABC}}=\dfrac{1}{3}.\dfrac{1}{4}\Rightarrow\dfrac{S_{BHE}}{S_{ABC}}=\dfrac{1}{12}\)

10 tháng 12 2023

Xét ΔBAH có BI là phân giác

nên \(\dfrac{AI}{AB}=\dfrac{IH}{BH}\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

10 tháng 12 2023

Thiếu bạn ơi