Vẽ góc x'Ay' đối đỉnh với góc xAy. Vẽ tia phân giác Az của góc xAy và tia đối At là tia Az. So sánh góc x'At và góc y'At
Vẽ cả hình và làm đầy đủ nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Vì góc x'Ay' và góc xAy đối đỉnh với nhau.
=> \(\widehat{x'Ay'}=\widehat{xAy}\)
Mà Az là tia phân giác của \(\widehat{xAy}\)
=>\(\widehat{xAz}=\widehat{zAy}\)
Ta có At là tia đối của Az
Mà \(\widehat{x'Ay'}=\widehat{xAy}\)
=> At cũng là tia phân giác của \(\widehat{x'Ay'}\)
\(\Rightarrow\widehat{x'At}=\widehat{y'At}\)
Vậy \(\widehat{x'At}=\widehat{y'At}\)
# Học tốt #
c:\program files\bytefence\cache\sr070511a9fbcf0cb7d3217a7ba70747741de3f972
3, d, theo bài góc x'ay' đối đỉnh với yAx=> góc xAy= góc y'Ax'
Mà At là đường phân giác của góc xAy(1)
Hơn nữa: At' là tia đối của tia At(2)
Từ (1) và (2) suy ra: At' là tia phân giác của góc x'Ay'
Vậy At' là tia phân giác của góc x'Ay'
e, 5 góc đối đỉnh là:
+ góc xAy và góc x'Ay'
+ góc yAt và góc y'At'
+ góc xAt và góc x'At'
+ góc xAy'và góc x'Ay
+góc yAt' và góc xAt'
Ta có: góc xAt= 1/2 góc xAy; góc x'At' =1/2 góc x'Ay'
mà góc xAy = x'At' ( hai góc đối đỉnh)
=> xAt=x'At'
Ta có xAy+ yAx' = 180
=> 36* + yAx' = 180
=> yAx' = 144
Ta có tAt' = tAy + yAx' +t'Ax'
= 1/2 xAy + 144 + 1/2 x'Ay'
mà xAy = x'Ay' (đối đỉnh)
=> tat' = 1/2. 36 + 144+ 1/2 . 36
= 180
=> t, A, t' thẳng hàng
mà xAt = x'At' (cmt)
=> điều phải chứng minh.
b, Ta có:
xOtˆ=x′Ot′ˆ;yOtˆ=y′Ot′ˆxOt^=x′Ot′^;yOt^=y′Ot′^
mà xOtˆ=yOtˆ(gt)xOt^=yOt^(gt)
nên x′Ot′ˆ=y′Ot′ˆx′Ot′^=y′Ot′^
=> Ot' là phân giác của x′Oy′ˆx′Oy′^.(đpcm)