K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{46}{7}+\dfrac{81}{35}< =x< =\dfrac{49}{36}\)

\(\Leftrightarrow\dfrac{311}{35}< =x< =\dfrac{49}{36}\)

\(\Leftrightarrow x\in\varnothing\)

15 tháng 3 2020

Đề bài sai rồi bạn, đáng lẽ đề bài phải như thế này:

Chứng minh rằng với mọi \(x\in[-\frac{3}{4};+\infty)\) thì \(\frac{x}{x^2+1}\le\frac{18}{25}x+\frac{3}{50}\)

Ta sẽ phân tích bất phương trình kia

\(\Leftrightarrow0,72x+0,06\ge\frac{x}{x^2+1}\)

\(\Leftrightarrow0,72x^3+0,06x^2-0,28x+0,06\ge0\)

\(\Leftrightarrow0,72\left(x+\frac{3}{4}\right)\left(x-\frac{1}{3}\right)^2\ge0\Leftrightarrow x\ge-\frac{3}{4}\)

\(\frac{3}{7}\cdot15\cdot\frac{1}{3}+\frac{3}{7}\cdot5\cdot\frac{2}{5}\le x\le\left(3\frac{1}{2}:7-6\frac{1}{2}\right)\cdot\left(-2\frac{1}{3}\right)\)

\(\Leftrightarrow\frac{15}{7}+\frac{6}{7}\le x\le-6\cdot\frac{-5}{3}\)

\(\Leftrightarrow3\le x\le10\)

Mà \(x\in Z\)

\(\Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)

30 tháng 3 2020

bn Quân sai rồi, hỗn số \(15\frac{1}{3}\)chứ có phải \(15.\frac{1}{3}\)đâu???

a) Để \(\frac{15}{4x^2-12x+19}\le\frac{3}{2}\) thì \(15\cdot2\le3\cdot\left(4x^2-12x+19\right)\)

\(\Leftrightarrow30\le12x^2-36x+57\)

\(\Leftrightarrow30-12x^2+36x-57\le0\)

\(\Leftrightarrow-12x^2+36x-27\le0\)

\(\Leftrightarrow-12\left(x^2-3x+\frac{9}{4}\right)\le0\)

\(\Leftrightarrow-12\left(x-\frac{3}{2}\right)^2\le0\)(luôn đúng)

b) Để \(\frac{4x+3}{x^2+1}\le4\)

thì \(4x+3\le4\left(x^2+1\right)\)

\(\Leftrightarrow4x+3\le4x^2+4\)

\(\Leftrightarrow4x+3-4x^2-4\le0\)

\(\Leftrightarrow-4x^2+4x-1\le0\)

\(\Leftrightarrow-\left(4x^2-4x+1\right)\le0\)

\(\Leftrightarrow-\left(2x-1\right)^2\le0\)(luôn đúng)

30 tháng 8 2019

Bạn ơi máy cái này tìm GTNN thì làm sao mà tìm được ! Đề bạn sai rồi ! Đây mình làm theo tìm GTLN nha !

Bài 1 :                                                   Bài giải

\(A=\frac{5}{7}-\left|3x-2\right|\)

A đạt GTLN khi \(\left|3x-2\right|\) đạt GTNN.

Mà \(\left|3x-2\right|\ge0\) Dấu " = " xảy ra khi \(3x-2=0\) \(\Rightarrow\text{ }3x=2\) \(\Rightarrow\text{ }x=\frac{2}{3}\)

\(\Rightarrow\text{ }\frac{5}{7}-\left|3x-2\right|\le0\)

Vậy Max \(\frac{5}{7}-\left|3x-2\right|=\frac{5}{7}\) khi \(x=\frac{2}{3}\)

31 tháng 8 2019

đề bài là 

tìm GTNN ,GTLN của các biểu thức