K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

\(a,ĐK:x,y\ne2\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\y-2=b\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{3}{a}+\dfrac{2}{b}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{a}+\dfrac{9}{b}=15\\\dfrac{6}{a}+\dfrac{4}{b}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{5}{b}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+3=5\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow x=y=3\left(tm\right)\)

\(b,ĐK:x\ge3;y\ge1\)

Sửa: \(\sqrt{x-3}-\sqrt{y-1}=4\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-3}\ge0\\b=\sqrt{y-1}\ge0\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}a-2b=2\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3=36\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\y=5\end{matrix}\right.\)

25 tháng 12 2021

bạn ơi, đề câu b thầy mình ra là vậy á

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

29 tháng 4 2023

4. Đk: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)

10 tháng 12 2023

a: \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\sqrt{15}x-2\sqrt{3}\cdot y=2\sqrt{15}\left(\sqrt{3}-1\right)\\2\sqrt{15}x+15y=21\sqrt{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2\sqrt{3}y-15y=2\sqrt{45}-2\sqrt{15}-21\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-2\sqrt{3}-15\right)=-15\sqrt{5}-2\sqrt{15}\\2\sqrt{3}\cdot x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{15\sqrt{5}+2\sqrt{15}}{2\sqrt{3}+15}=\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\2\sqrt{3}x=21-3\sqrt{5}\cdot\sqrt{5}=21-15=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\x=\dfrac{6}{2\sqrt{3}}=\sqrt{3}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8,5x-10y=19\\4,2x+10y=0,8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8,5x-10y+4,2x+10y=19,8\\2,1x+5y=0,4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12,7x=19,8\\2,1x+5y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{198}{127}\\5y=0,4-2,1x=-\dfrac{365}{127}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{198}{127}\\y=-\dfrac{73}{127}\end{matrix}\right.\)

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

10 tháng 10 2023

Đặt \(\sqrt{x+3}=a\)\(\sqrt{y+1}=b\) (a,b \(\ge0\))

\(\Rightarrow\left\{{}\begin{matrix}a-2b=2\\2a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b=4\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=0\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{y+1}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(tmđk)

Vậy hệ pt có nghiệm suy nhất (x;y) = (1;-1)

  

DD
26 tháng 12 2022

ĐKXĐ: \(\left\{{}\begin{matrix}9y-5\ge0\\x+y\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ge\dfrac{5}{9}\\x+y\ge0\end{matrix}\right.\).

Phương trình (1) tương đương với: 

\(\left(x^2+y^2\right)\left(x+y\right)-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)-\left(x^2+y^2\right)+x^2+y^2-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)^2-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+y^2+x+y=0\end{matrix}\right.\)

- Với \(x^2+y^2+x+y=0\) có \(x+y=0\) (theo điều kiện) 

suy ra \(x=y=0\) (không thỏa mãn).

- Với \(x+y-1=0\Leftrightarrow y=1-x\) thế vào phương trình (2) ta được: 

\(x^2+11x+6=2\sqrt{9\left(1-x\right)-5}+\sqrt{1}\)

\(\Leftrightarrow x^2+11x+5-2\sqrt{14-9x}=0\)

\(\Rightarrow\left(x^2+11x+5\right)^2=4\left(14-9x\right)\)

\(\Leftrightarrow x^4+22x^3+131x^2+146x-31=0\)

Bạn giải phương trình trên, thử lại ta được nghiệm của bài toán. 

Đáp án ra số khá xấu nên thầy không ghi ra đây. 

Em có thể tham khảo cách làm nhé. 

 

 

 

18 tháng 5 2022

\(\left\{{}\begin{matrix}4\sqrt{x}-3\sqrt{y}=4\\2\sqrt{x}+\sqrt{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4\sqrt{x}-3\sqrt{y}=4\\4\sqrt{x}+2\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y}=0\\2\sqrt{x}+\sqrt{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}=0\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\sqrt{x}-3\sqrt{y}=4\\4\sqrt{x}+2\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)