K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Ta cm 1 bđt sau:\(a^4+b^4\ge ab\left(a^2+b^2\right)\).Thật vậy:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)Áp dụng: \(T=\frac{a}{b^4+c^4+a}+\frac{c}{a^4+b^4+c}+\frac{b}{c^4+a^4+b}\)

\(T\le\frac{a}{bc\left(b^2+c^2\right)+a}+\frac{c}{ab\left(a^2+b^2\right)+c}+\frac{b}{ac\left(a^2+c^2\right)+b}\)

\(=\frac{a^2}{abc\left(b^2+c^2\right)+a^2}+\frac{c^2}{abc\left(a^2+b^2\right)+c^2}+\frac{b^2}{abc\left(a^2+c^2\right)+b^2}\)

Do abc=1 \(\Rightarrow T\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1."="\Leftrightarrow a=b=c=1\)

7 tháng 7 2019

Bài làm rất hay, cảm ơn bạn nhiều nhé

13 tháng 8 2016

\(b^4+c^4+a=b^4+c^4+a.abc\)

+Chứng mih \(b^4+c^4\ge bc\left(b^2+c^2\right)\text{ (1)}\)

\(\left(1\right)\Leftrightarrow\frac{1}{2}.\left(b-c\right)^2\left[b^2+c^2+\left(b+c\right)^2\right]\ge0\)(đúng)

\(\Rightarrow b^4+c^4+a\ge bc\left(b^2+c^2\right)+a^2bc=bc\left(a^2+b^2+c^2\right)=\frac{1}{a}\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a^2}{a^2+b^2+c^2}\)

Tương tự và cộng lại ta sẽ có kết quả.

12 tháng 12 2019

Ta có :

       2.C = \(2.x+2.y+\frac{4}{x}=\left(x+2.y\right)+\left(x+\frac{4}{x}\right)\ge8+2\sqrt{x.\frac{4}{x}}=12\)

=>  \(C\ge12\)

Dấu " = "   <=>  \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

2 tháng 4 2020

Đang lướt câu hỏi của bạn thì thấy câu này hay tiện tay làm luôn :D

\(b^4+c^4=\frac{3b^4+c^4}{4}+\frac{3c^4+b^4}{4}\ge\frac{4\sqrt[4]{\left(b^4\right)^3\cdot c^4}}{4}+\frac{4\sqrt[4]{\left(c^4\right)^3b^4}}{4}=b^3c+c^3b\)

\(=bc\left(b^2+c^2\right)=\frac{1}{a}\left(b^2+c^2\right)=\frac{b^2+c^2}{a}\)

\(\Rightarrow a+b^4+c^4\ge a+\frac{b^2+c^2}{a}=\frac{a^2+b^2+c^2}{a}\)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a^2}{a^2+b^2+c^2}\)

Thiết lập các BĐT tương tự,khi đó:

\(A\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra tại a=b=c=1

31 tháng 3 2018

\(b^4+c^4\ge bc\left(b^2+c^2\right)\)vì \(\left(b-c\right)^2\left(b^2+bc+c^2\right)\ge0\)

\(\Rightarrow T\le\frac{a}{\frac{b^2+c^2}{a}+a}+\frac{b}{\frac{a^2+c^2}{b}+b}+\frac{c}{\frac{a^2+b^2}{c}+c}=1\)

1 tháng 4 2018

rõ đi bạn

8 tháng 7 2020

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

8 tháng 7 2020

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

26 tháng 7 2019

a) \(x^4+y^4\ge xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow x=y\)

b) Áp dụng câu a) ta có :

\(b^4+c^4+a\ge bc\left(b^2+c^2\right)+a\)

Mặt khác : \(abc=1\Leftrightarrow bc=\frac{1}{a}\)

\(\Rightarrow b^4+c^4+a\ge\frac{b^2+c^2}{a}+a=\frac{a^2+b^2+c^2}{a}\)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{\frac{a^2+b^2+c^2}{a}}=\frac{a^2}{a^2+b^2+c^2}\)

Chứng minh tương tự :

\(\frac{b}{c^4+a^4+b}\le\frac{b^2}{a^2+b^2+c^2};\frac{c}{a^4+b^4+c}\le\frac{c^2}{a^2+b^2+c^2}\)

Cộng theo vế của 3 bất đẳng thức

\(\Rightarrow A\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

8 tháng 7 2020

Áp dụng AM - GM 

\(P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}\ge\frac{1}{\sqrt{2ab}}+\frac{1}{\sqrt{2bc}}+\frac{1}{\sqrt{2ca}}\)

\(abc=a+b+c+2\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)\ge\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

Với mọi số thực x,y,z ta có ngay:

\(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{1+\frac{y+z}{x}}+\frac{1}{1+\frac{z+x}{y}}+\frac{1}{1+\frac{x+y}{z}}=1\)

Khi đó ta có thể đặt được \(\left(a;b;c\right)\rightarrow\left(\frac{y+z}{x};\frac{z+x}{y};\frac{x+y}{z}\right)\) 

Thay vào thì dễ có:

\(\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(z+y\right)\left(x+y\right)}}\)

\(\le\frac{1}{2}\Sigma\left(\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy ...........................

NV
20 tháng 6 2019

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải

20 tháng 6 2019

Anh ơi sao e ko nhắn đc cho anh nhỉ??!