Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2+ x2.x3+ ...+ xn.x1= 0 thì n chia hết cho 4
khó quá mình ko làm được
làm chi tiết cho mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-n-so-x1-x2-xn-moi-so-nhan-gia-tri-1-hoac-1chung-minh-rang-neu-x1x2-x2x3-xnx1-0-thi-n-chia-het-cho-4.3190495787733
Tham khảo :
Lời giải:
Vì x1,x2,...,xnx1,x2,...,xn nhận giá trị 11 hoặc −1−1 nên x1x2,x2x3,...,xnx1x1x2,x2x3,...,xnx1 nhận giá trị 11 hoặc −1−1
Để tổng x1x2+...+xnx1=0x1x2+...+xnx1=0 thì số số hạng nhận giá trị 11 bằng số số hạng nhận giá trị −1−1
Gọi số số hạng nhận giá trị 11 và số số hạng nhận giá trị −1−1 là kk
Tổng số số hạng: n=k+k=2kn=k+k=2k
Lại có:
(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1
⇒k⇒k chẵn
⇒n=2k⋮4
Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$
Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$
Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$
Tổng số số hạng: $n=k+k=2k$
Lại có:
$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$
$\Rightarrow k$ chẵn
$\Rightarrow n=2k\vdots 4$
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên.
Lời giải:
Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$
Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng
$\Rightarrow n$ chia hết cho $2$
Mặt khác:
\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$
$\Rightarrow \frac{n}{2}$ chẵn
$\Rightarrow n$ chia hết cho $4$ (đpcm)
Cho n số x1; x2;...; xn mỗi số nhận giá trị 1 hoặc -1
=> x1.x2; x2.x3; x3.x4;...; xn.x1 sẽ nhận các giá trị là -1 hoặc 1
Theo bài ra ta có:
x1.x2+ x2.x3+x3.x4+...+ xn.x1=0
=> Trong n hạng tử trên sẽ có k hạng tử mà mỗi hạng tử bằng 1 và k hạng tử mà mỗi hạng tử bằng -1 với k là số tự nhiên lớn hơn 1
=> n=2k
Mặt khác ta có: (x1.x2)(x2.x3)...(xn.x1)=(x1)^2.(x2)^2....(xn)^2=1
=> (-1)^k. (1)^k=1
<=> (-1)^k=1
<=> k là số chẵn
=> k chia hết cho 2
=> n chia hết cho 4