K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

`a)lim_{x->+oo}[x+1]/[x^2+x+1]`

`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`

`=0`

`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`

`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`

`=0`

`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`

`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`

`=-3`

`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`

`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`

`=-5/3`

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x >  - 1\)

Sai, chẳng hạn với \(x =  - 2\) thì \({x^2} = 4 > 1\) nhưng \(x =  - 2 <  - 1\).

B. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > 1\)

Sai, chẳng hạn với \(x =  - 2\) thì \({x^2} = 4 > 1\) nhưng \(x =  - 2 < 1\).

C. \(\forall x \in \mathbb{R},x >  - 1 \Rightarrow {x^2} > 1\)

Sai, chẳng hạn với \(x = 0 >  - 1\) nhưng \({x^2} = 0 < 1\)

D. \(\forall x \in \mathbb{R},x > 1 \Rightarrow {x^2} > 1\)

Đúng.

Chọn đáp án D

24 tháng 9 2023

D

18 tháng 11 2023

`a)lim_{x->+oo}[5x^2+x^3+5]/[4x^3+1]`       `ĐK: 4x^3+1 ne 0`

`=lim_{x->+oo}[5/x+1+5/[x^3]]/[4+1/[x^3]]`

`=1/4`

`b)lim_{x->-oo}[2x^2-x+1]/[x^3+x-2x^2]`      `ĐK: x ne 0;x ne 1`

`=lim_{x->-oo}[2/x-1/[x^2]+1/[x^3]]/[1+1/[x^2]-2/x]`

`=0`

Câu `c` giống `b`.

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)

28 tháng 2 2021

\(\lim\limits_{x\rightarrow-2}\dfrac{x^3+2x^2}{\sqrt{x^2+4x+4}}=\lim\limits_{x\rightarrow-2}\dfrac{x^2\left(x+2\right)}{\sqrt{\left(x+2\right)^2}}\)

\(=\lim\limits_{x\rightarrow-2}x^2=\left(-2\right)^2=4\)

p/s: bài này mình chưa học trên lớp nên ko chắc 100% đúng

NV
28 tháng 2 2021

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x+1}}{\sqrt{x+\sqrt{x+1}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}}}{\sqrt{1+\sqrt{\dfrac{1}{x}+\dfrac{1}{x^2}}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

Câu c số 1 trong hay ngoài căn nhỉ?

đăng lên làm j z