Chia số 6200 thành ba phần:
a) Tỉ lệ thuận với 2; 3; 5.
b) Tỉ lệ nghịch với 2; 3; 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mỗi đề bài cậu gọi là a;b;c rồi áp dụng tính chất dãy tỉ số bằng nhau nhé
a) Chia số 850 thành ba phần tỉ lệ thuận với 3;5;9
b) Chia số 200 thành ba phần tỉ lệ thuận với 7;4;2
Gọi 3 phần đó lần lượt là a, b, c.
a.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{99}{9}=11\)
\(\frac{a}{2}=11\Rightarrow a=11\times2=22\)
\(\frac{b}{3}=11\Rightarrow b=11\times3=33\)
\(\frac{c}{4}=11\Rightarrow c=11\times4=44\)
b.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{285}{15}=19\)
\(\frac{a}{3}=19\Rightarrow a=19\times3=57\)
\(\frac{b}{5}=19\Rightarrow b=19\times5=95\)
\(\frac{c}{7}=19\Rightarrow c=19\times7=133\)
d.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{8}=\frac{d}{12}=\frac{a+b+c+d}{4+7+8+12}=\frac{465}{31}=15\)
\(\frac{a}{4}=15\Rightarrow a=15\times4=60\)
\(\frac{b}{7}=15\Rightarrow b=15\times7=105\)
\(\frac{c}{8}=15\Rightarrow c=15\times8=120\)
\(\frac{d}{12}=15\Rightarrow d=15\times12=180\)
a) 99= 22+33+44
b) 285=57+95+133
c) 2A5 là cái gì ?
d) 465= 60+105+120+180
a)
Gọi 3 phần của số 6200 lần lượt là a, b, c.
Theo đè ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và \(a+b+c=6200\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{6200}{10}=620\)
\(\dfrac{a}{2}=620\Rightarrow a=620.2=1240\)
\(\dfrac{b}{3}=620\Rightarrow b=620.3=1860\)
\(\dfrac{c}{5}=620\Rightarrow c=620.5=3100\)
Vậy số 6200 được chia thành 3 phần lần lượt là 1240, 1860, 3100.
b)
Gọi 3 phần của số 6200 lần lượt là a, b, c.
Theo đè ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\) và \(a+b+c=6200\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{6200}{\dfrac{31}{30}}=6000\)
\(\dfrac{a}{\dfrac{1}{2}}=6000\Rightarrow a=6000.\dfrac{1}{2}=3000\)
\(\dfrac{b}{\dfrac{1}{3}}=6000\Rightarrow b=6000.\dfrac{1}{3}=2000\)
\(\dfrac{c}{\dfrac{1}{5}}=6000\Rightarrow c=6000.\dfrac{1}{5}=1200\)
Vậy số 6200 được chia thành 3 phần lần lượt là 3000, 2000, 1200.
a) Gọi ba phần của số 6200 là a, b, c. Từ giả thiết ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(a+b+c=6200\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)
\(\left\{{}\begin{matrix}\frac{a}{2}=620=>a=620.2=1240.\\\frac{b}{3}=620=>b=620.3=1860.\\\frac{c}{5}=620=>c=620.5=3100.\end{matrix}\right.\)
Vậy ba phần của số 6200 tỉ lệ thuận với 2, 3, 5 là: 1240; 1860; 3100.
b) Gọi ba phần của số 6200 là x, y, z. Từ giả thiết ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\) và \(x+y+z=6200\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{1}{2}}=6000=>x=6000.\frac{1}{2}=3000\\\frac{y}{\frac{1}{3}}=6000=>y=6000.\frac{1}{3}=2000\\\frac{z}{\frac{1}{5}}=6000=>z=6000.\frac{1}{5}=1200\end{matrix}\right.\)
Vậy ba phần của số 6200 tỉ lệ nghịch với 2, 3, 5 là 3000; 2000; 1200.
Chúc bạn học tốt!
Gọi 3 phần đó lần lượt là a, b, c( 0<a,b,c<6200)
Vì 3 phần đó lần lượt tỉ lệ thuận với 2,3,5 nên ta có
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) Mà a+b+c =310
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)
Do đó:
\(\frac{a}{2}=620=>a=1240\)
\(\frac{b}{3}=620=>b=1860\)
\(\frac{c}{5}=620=>c=3100\)
Vậy ...
b,Gọi 3 phần đó lần lượt là a,b,c( 0<a,b,c<6200)
Vì 3 phần đó lần lượt TLN với 2,3,5 nên ta có
a/ \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)
Mà a+ b+c= 6200
Áp dụng tc ...
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)
Do đó:
\(\frac{a}{\frac{1}{2}}=6000=>a=3000\)
\(\frac{b}{\frac{1}{3}}=6000=>b=2000\)
\(\frac{c}{\frac{1}{5}}=6200=>c=1240\)
Vậy...