Rút gọn biểu thức sau: \(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge2\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Xét \(x\ge4\Rightarrow\sqrt{x-2}\ge\sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
Xét \(0\le x< 4\Rightarrow\sqrt{x-2}< \sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
\(=-\left(4\sqrt{2x}-3\sqrt{2x}\right)+8-2\sqrt{x}\)
\(=-\sqrt{2x}-2\sqrt{x}+8\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+3\cdot3\sqrt{2x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+9\sqrt{2x}+18\)
\(=\left(3+9-6\right)\sqrt{2x}+18\)
\(=6\sqrt{2x}+18\)
\(A=\frac{\left(x+\sqrt{x^2-2x}\right)^2-\left(x-\sqrt{x^2-2x}\right)^2}{\left(x-\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}\)
\(=\frac{2x\times2\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)
\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)
\(=\sqrt{\frac{x-2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\frac{2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)