K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Đáp án D

Định lí: “Nếu hàm số y = f x  liên tục trên a ; b  và f a . f b < 0  thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho f c = 0 ”.

Mệnh đề 1: SAI ở giả thiết (a;b).

Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên  a ; b

và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho c hay  f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.

Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0  thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG

12 tháng 1 2018

Đáp án A

Mệnh đề đúng 1,3

12 tháng 10 2019

Đáp án C

Cả 3 khẳng định đều đúng

16 tháng 12 2019

12 tháng 6 2018

- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C

- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).

13 tháng 5 2017

Đáp án A.

Hàm số có y = x4 – x + 2 không là hàm số chẵn nên mệnh đề I sai.

Mệnh đề II, III, IV đúng

23 tháng 9 2017

Đáp án A.

Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.

 

Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]