Cho ứ giác ABCD cm
AB< BC+CD+AD
AC + BD < AB+BC+CD+AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi \(O\)là giao điểm \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)
Cộng lại vế theo vế ta được:
\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)
\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).
b) Theo bất đẳng thức tam giác:
\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)
Cộng lại vế theo vế ta được:
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).
1/nối AC
Do AB//CD=>BAC=ACD(so le trong)
Do AD//BC=>ACB=DAC(so le trong)
Xét ∆ABC và ∆ACD
ACB=DAC(chứng minh trên)
BAC=DAC(chứng minh trên)
AC chung
Vậy ∆ABC=∆CDA(g.c.g)=>AB=DC(cặp cạnh tương ứng)
AD=BC(cặp cạnh tương ứng)
a) Gọi O la giao điểm AC và BD
ta có
AO+BO>AB ( bất đẳng thức trong tam giác AOB)
OC+OD>CD (bất đẳng thức trong tam giác OCD)
=> AO+BO+OC+OD>AB+CD
=>AC+BD>AB+CD
b) ta có
AO+OD >AD (bất đẳng thức trong tam giác AOD)
OC+OB >BC(bất đẳng thức trong tam giác BOC)
=>AO+OD+OC+OB>AD+BC
=> AC+BD>AD+BC
thiếu đề bài
Cho tứ giác ABCD cm
CMR:
AB<NC+CD+AD
AC+BD<AB+BC+CD+AD
AB < OB + OA ; BC < OB + OC ; CD < OC + OD ; AD < OA + OD
=> AB +BC + CD + AD < 2(OA + OB + OC + OD)
=> (AB+BC+CD+AD)/2<AC+BD (1)
=> 2(AB + BC + CD + DA) > 2(AC + BD)
=> AB + BC + CD + DA > AC + BD (2)
Từ (1) và (2) suy ra đpcm
~hOK TỐT~
Câu hỏi của Nguyễn Tuấn Anh - Toán lớp 8 | Học trực tuyến
Tham khảo nhé,đề bài bạn còn thiếu gì không?