tìm GTLN
a/ 8x-x^2
b/3/x^2-4x+10
c/x^2+y^2 biết x+y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)
\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)
Vậy MaxA=-3 khi x=1
b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2
a: \(B=1-\sqrt{\left(x-1\right)^2+1}\)
(x-1)^2+1>=1
=>\(\sqrt{\left(x-1\right)^2+1}>=1\)
=>\(B< =0\)
Dấu = xảy ra khi x=1
b:
ĐKXĐ: -(x+2)^2+2>=0
=>-(x+2)^2>=2
=>(x+2)^2<=2
=>\(-\sqrt{2}-2< =x< =\sqrt{2}-2\)
\(-x^2+4x-2=-\left(x^2-4x+2\right)\)
\(=-\left(x^2-4x+4-2\right)=-\left(x-2\right)^2+2< =2\)
=>\(0< =\sqrt{4x-x^2-2}< =\sqrt{2}\)
=>1<=C<=căn 2+1
\(C_{max}=\sqrt{2}+1\Leftrightarrow x=2\)
b: =>4x^2+8x-8x^2+5x-10=0
=>-4x^2+13x-10=0
=>x=2 hoặc x=5/4
c: =>2x^2-5x+6x-15=2x^2+8x
=>x-15=8x
=>-7x=15
=>x=-15/7
d: =>3x^2+15x-2x-10-3x^2-12x=5
=>x-10=5
=>x=15
e: =>x^2-3x+2x^2+2x=3x^2-12
=>-x=-12
=>x=12
ta có 4 x 3 y 2 – 8 x 2 y 3 = 4 x 2 y 2 . x – 4 x 2 y 2 . 2 y = 4 x 2 y 2 ( x – 2 y )
Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Đáp án cần chọn là: C
bấm đúng cho mik đi
Bài 1:
a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)
\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)
\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Bài 2:
\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
\(1a,8x^2y^2-12x^3+6x^2\)
\(=2\left(4x^2y^2-13x^3+3x^2\right)\)
\(b,5x\left(x-y\right)-\left(x-y\right)\)( sai đề hả )
\(=\left(x-y\right)\left(5x-1\right)\)
\(c,4x\left(x-2\right)-\left(2-x\right)^2\)
\(=4x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left(4x-x+2\right)=\left(x-2\right)\left(3x+2\right)\)
\(2,\)\(x\left(x-3\right)-\left(3-x\right)=0\)
\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
phần b làm theo đề thôi nhé ko biết đầu bài đúng ko
\(5x\left(x-y\right)-\left(y-y\right)\)
\(=5x\left(x-y\right)\)
HA ha ngắn gọn vãi
a/ \(8x-x^2\)
\(=-\left(x^2-8x\right)\)
\(=-\left(x^2-2\cdot4x+16-16\right)\)
\(=-\left(x-4\right)^2+16\)
Có \(\left(x-4\right)^2\ge0\)
\(\Rightarrow-\left(x-4\right)^2\le0\)
\(\Rightarrow-\left(x-4\right)^2+16\le16\)
\(\Rightarrow GTLN\left(8x-x^2\right)=16\)
với \(\left(x-4\right)^2=0;x=4\)
b/ \(\frac{3}{x^2-4x+10}\)
Xét mẫu số ta có : \(x^2-4x+10\)
\(=x^2-2\cdot2x+4-4+10\)
\(=\left(x-2\right)^2-4+10\)
\(=\left(x-2\right)^2+6\)
Có \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2+6\ge6\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2+6}\le\frac{3}{6}\)
\(\Rightarrow GTLN\frac{3}{x^2-4x+10}=\frac{3}{6}\)
với \(\left(x-2\right)^2=0;x=2\)
c/ cái này f GTNN chứ bạn, mik thấy kq ra dương , bạn ktra giúp mik nha.
\(x^2+y^2\)
Có \(x+y=2\Rightarrow x=2-y\)
\(x^2+y^2\)
\(=\left(2-y\right)^2+y^2\)
\(=4-4y+y^2+y^2\)
\(=4-4y+y^2\)
\(=2y^2-4y+4\)
\(=2\left(y^2-2y+2\right)\)
\(=2\left(y^2-2\cdot1y+1+1\right)\)
\(=2\left[\left(y-1\right)^2+1\right]\)
\(=2\left(y-1\right)^2+2\)
Có \(\left(y-1\right)^2\ge0\Rightarrow\left(y-1\right)^2+2\ge2\)
\(\Rightarrow GTNN2\left(y-1\right)^2+2\ge2\)
với \(\left(y-1\right)^2=0;y=1\)
\(\Rightarrow GTNN\left(x^2+y^2\right)\ge2\)với\(x=1;y=1\)