K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

Đặt a/2018 = b/2019 = c/2020 

=> a = 2018k ; b = 2019k ; c = 2020k

Khi đó, ta có :

(2018k - 2020k)2 = 4k2 (1)

4.(2018k - 2019k)(2019k - 2020k) = 4.(-k).(-k) = 4k2 (2)

Từ (1) và (2) => đpcm

16 tháng 6 2019

Mình làm cách lớp 7 kiểu khác nhé:

Áp dụng tính chất của dãy tỉ số bằng nhau : 

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-c}{2018-2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}\)

\(\Rightarrow\frac{a-c}{-2}=\frac{a-b}{-1}=\frac{b-c}{-1}\Leftrightarrow a-c=2\left(a-b\right)=2\left(b-c\right)\&a-b=b-c\)

\(\Leftrightarrow\left(a-c\right)^2=2\left(a-b\right).2\left(b-c\right)=4\left(a-b\right)\left(b-c\right)\left(đpcm\right).\)

Ta có :

\(\frac{a+b-b-c}{2018-2019}=\frac{a-c}{-1}\)

\(\frac{b+c-c-a}{2019-2020}=\frac{b-a}{-1}\)

\(\frac{b-c}{2018-2020}=\frac{b-c}{-2}\)     

Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{b-c}{-2}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{a-c}{-1}=k\\\frac{b-a}{-1}=k\\\frac{b-c}{-2}=k\end{cases}\Rightarrow\hept{\begin{cases}a-c=-k\\b-a=-k\\b-c=k.\left(-2\right)\end{cases}}}\)

\(\Rightarrowđpcm\)

29 tháng 10 2019

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow a=2018k\)\(b=2019k\)\(c=2020k\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2018k-2019k\right)\left(2019k-2020k\right)\)

                                                 \(=4.\left(-k\right).\left(-k\right)=4k^2=\left(2k\right)^2\)

Ta lại có: \(\left(a-c\right)^2=\left(2018k-2020k\right)^2=\left(-2k\right)^2=\left(2k\right)^2\)

Vậy \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)

18 tháng 8 2020

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Thế vị trí tương ứng ta được :

VT = 4( a - b )( b - c )

       = 4( 2018k - 2019k )( 2019k - 2020k )

       = 4(-k)(-k)

       = 4k2

VP = ( a - c )2 

       = ( 2018k - 2020k )2

       = ( -2k )2

       = 4k2

=> VT = VP

=> đpcm

5 tháng 2 2020

Ta có: \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}=\frac{a-c}{2018-2020}.\)

12 tháng 12 2020

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Khi đó 4(a - b)(b - c) = 4(2018k - 2019k)(2019k - 2020k)

= 4(-k).(-k) 

= 4k2 (1)

Lại có (c - a)2 = (2020k - 2018k)2 = (2k)2 = 4k2 (2)

Từ (1)(2) => 4(a - b)(b - c) = (c - a)2

29 tháng 10 2019

Đề sai sai gì đó nhá xem lại dùm

14 tháng 5 2019

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\) 

Với  :   \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\) 

Và   :   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\) 

             \(B=1-\frac{1}{2020}< 1< A\)