tìm x để x^2 +1 là số chính phương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
26 tháng 9 2021
Mode 5 3 trên máy tính Casio fx-570 :
a) a=1,b=-2,c=-4
b) a=1,b=-2,c=7
NH
0
TD
1
DH
1
DT
1
MW
24 tháng 3 2021
Giả sử \(^{2^x+1=a^2}\), ta có:
<=> \(2^x=a^2-1\)
<=>\(2^x=a^2-a+a-1\)
<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)
<=>\(2^x=\left(a-1\right)\left(a+1\right)\)
=>
- \(a-1=2^y\)<=>\(a=2^y+1\)
- \(a+1=2^z\)<=>\(a=2^z-1\)
(x=y+z)
=> \(2^y+1=2^z-1\)
<=>\(2^z-2^y=2\)
<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)
<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)
Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:
- \(2^{y-1}=1\)<=> y-1 = 0 <=> y=1
- \(2^{z-1}=2\)<=> z-1 = 1 <=> z=2
=> x = y+z = 1+2 = 3.
DK
0
DL
0
bạn ơi đây ko phải lớp 1