K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

Bạn vt đề bài rõ ra nhé, mk RG trc rùi phần câu hỏi xem sau( P là j z?)

\(=\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}-2\)

\(=x-\sqrt{x}-3\)

16 tháng 6 2019

P là bthức trên đó bn

30 tháng 6 2020

tks

10 tháng 8 2018

đk: \(x\ge0\)và      \(x\ne1\)

\(\Leftrightarrow P=\frac{x-1+\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-1}\right)}-\frac{2x-10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\frac{x-1+x+\sqrt{x}-6-2x+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

để P > 0

\(\Leftrightarrow1>\sqrt{x}-1\)

\(\Leftrightarrow-\sqrt{x}>-2\)

\(\Leftrightarrow\sqrt{x}< 2\)

\(\Leftrightarrow x< 4\)

có sai xót mong m.n bỏ qa cho ♥

25 tháng 8 2020

ĐKXĐ: \(x\ge1\); x khác 2; 3

Ta có: 

\(\frac{1}{\sqrt{x}-\sqrt{x-1}}=\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}=\sqrt{x}+\sqrt{x-1}\)

\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\sqrt{x-1}+\sqrt{2}\)

=> \(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x}+\sqrt{x-1}-\left(\sqrt{x-1}+\sqrt{2}\right)=\sqrt{x}-\sqrt{2}\)

\(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}=\frac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)

=> \(P=\left(\sqrt{x}-\sqrt{2}\right).\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{2-\sqrt{x}}{\sqrt{x}}\)