Cho \(\frac{40}{x-3}=\frac{20}{y-15}=\frac{28}{z-21}\) và \(xyz=22400\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng DSTCBN:
Ta có:
\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\Leftrightarrow\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}\)
\(\Rightarrow\frac{x-30}{10}=\frac{y-15}{5}=\frac{z-21}{7}\)
\(\frac{\Rightarrow x}{10}-\frac{30}{10}=\frac{y}{5}-\frac{15}{5}=\frac{z}{7}-\frac{21}{7}\)
\(\frac{\Rightarrow x}{10}-3=\frac{y}{3}-3=\frac{z}{7}-3\)
\(\frac{\Rightarrow x}{10}=\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{10}=\frac{y}{5}=\frac{z}{7}=t=\hept{\begin{cases}x=10t\\y=5t\\z=7t\end{cases}}\)
\(xyz=22400\Leftrightarrow350t^3=22400\Leftrightarrow t^3=64\Rightarrow t=4\)
\(\Rightarrow\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
\(\text{Ta có:}\)\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)
\(\Leftrightarrow\frac{x-30}{40}=\frac{y-15}{40}=\frac{z-21}{28}\)
\(\Leftrightarrow\frac{x}{40}-\frac{30}{40}=\frac{y}{40}-\frac{15}{40}=\frac{z}{28}-\frac{21}{28}\)
\(\Leftrightarrow\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)\
\(\Leftrightarrow\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\)
\(\text{đặt:}\)\(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow x=40k\)
\(\Rightarrow y=20k\)
\(\Rightarrow z=28k\)
\(\text{Theo đề ta có :}\)\(x.y.z=22400\Rightarrow40k.20k.28k=22400\)
\(\Rightarrow22400.k^3=22400\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=\pm1\)
\(\text{Với k=1 thì :}\)\(\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
\(\text{Với k=-1 thì :}\)\(\hept{\begin{cases}x=-40\\y=-20\\z=-28\end{cases}}\)
\(\frac{40}{x-30}=\frac{20}{y-15}=>2y-30=x-30=>x=2y.\)
Tương tự: \(\frac{40}{x-30}=\frac{28}{z-21}< =>\frac{10}{x-30}=\frac{7}{z-21}=>10z-210=7x-210=>7x=10z\)
\(\frac{20}{y-15}=\frac{28}{z-21}< =>\frac{5}{y-15}=\frac{7}{z-21}=>5z-105=7y-105=>7y=5z\)
Ta có: x.y.z=22400 <=> 2y.y.7y/5=22400
=> y3=22400.5/14=8000=203 => y=20 => z=7.20:5=28 ; x=2.20=40
Đáp số: x=40; y=20; z=28
Từ đẳng thức : \(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)
\(\Rightarrow1:\frac{40}{x-30}=1:\frac{20}{y-15}=1:\frac{28}{z-21}\)
\(\Rightarrow\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}\)
\(\Rightarrow\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=k\Rightarrow\hept{\begin{cases}x=40k\\y=20k\\z=28k\end{cases}}\)
Khi đó : xyz = 22400
<=> 40k.20k.28k = 22400
=> 22400.k3 = 22400
=> k3 = 1
=> k3 = 13
=> k = 1
Khi đó : x = 40.1 = 40 ;
y = 20.1 = 20;
z = 28.1 = 28
Vậy x = 40 ; y = 20 ; z = 28
Ta có:\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)
hay\(\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}\)
\(=\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)
\(\Rightarrow\)\(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\)\(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=\frac{x.y.z}{40.20.28}=\frac{22400}{22400}=1\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{x}{40}=1\\\frac{y}{20}=1\\\frac{z}{28}=1\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
Vậy x=40; y=20; z=28
40x−30=20y−15=28z−21⇔x−3040=y−1520=z−212840x−30=20y−15=28z−21⇔x−3040=y−1520=z−2128
⇒x−3010=y−155=z−217⇒x−3010=y−155=z−217
⇒x10−3010=y5−155=z7−217⇒x10−3010=y5−155=z7−217
⇒x10−3=y5−3=z7−3⇒x10−3=y5−3=z7−3
⇒x10=y5=z7⇒x10=y5=z7
Đặt: x10=y5=z7=t⇒⎧⎪⎨⎪⎩x=10ty=5tz=7tx10=y5=z7=t⇒{x=10ty=5tz=7t
xyz=22400⇔350t3=22400⇔t3=64⇒t=4xyz=22400⇔350t3=22400⇔t3=64⇒t=4
⇒⎧⎪⎨⎪⎩x=40y=20z=28
Ta có: \(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}.\)
\(\Rightarrow\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}.\)
\(\Rightarrow\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\) và \(x.y.z=22400.\)
Đặt \(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=k\Rightarrow\left\{{}\begin{matrix}x=40k\\y=20k\\z=28k\end{matrix}\right.\)
Có: \(x.y.z=22400\)
=> \(40k.20k.28k=22400\)
=> \(22400.k^3=22400\)
=> \(k^3=22400:22400\)
=> \(k^3=1\)
=> \(k=1.\)
Với \(k=1.\)
\(\Rightarrow\left\{{}\begin{matrix}x=40.1=40\\y=20.1=20\\z=28.1=28\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(40;20;28\right).\)
Chúc bạn học tốt!
ĐK: \(x\ne3;y\ne15;z\ne11\)
Đặt \(\frac{40}{x-3}=\frac{20}{y-15}=\frac{28}{z-21}=k\left(k\ne0\right).\)
\(\Rightarrow\hept{\begin{cases}40=k\left(x-3\right)\\20=k\left(y-15\right)\\28=k\left(z-21\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x-3=\frac{40}{k}\\y-15=\frac{20}{k}\\z-21=\frac{28}{k}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{40}{k}+3\\y=\frac{20}{k}+15\\z=\frac{28}{k}+21\end{cases}}}\)
\(\Rightarrow xyz=\left(\frac{40}{k}+3\right)\left(\frac{20}{k}+15\right)\left(\frac{28}{k}+21\right)\)
\(\Leftrightarrow\left(40a+3\right)\left(20a+15\right)\left(28a+21\right)=22400\left(a=\frac{1}{k}\right)\)
\(\Leftrightarrow35\left(4a+3\right)^2\left(40a+3\right)=22400\)
\(\Leftrightarrow\left(4a+3\right)^2\left(40a+3\right)=640\Leftrightarrow640a^3+1008a^2+432a-613=0\)
Sau một hồi Giải ra \(a=\frac{-21+\sqrt[3]{32729-80\sqrt{167290}}+\sqrt[3]{32729+80\sqrt{167290}}}{40}\)
Nếu thay a như trên để tìm x,y,z thì số không đẹp đâu bn
Coi lại đề nhé :)
Ý kiến riêng , không biết có đúng không ( đừng cho ăn gạch nha)
Sửa đề \(\frac{40}{x-30}=\frac{20}{x-15}=\frac{28}{z-2}.\)
Khi đó sửa x lại thành \(x=\frac{40}{k}+30\)
Biến đổi tương tự như phần trước mình đã làm có :
\(\left(40a+30\right)\left(20a+15\right)\left(28a+21\right)=22400\)
\(\Leftrightarrow350\left(4a+3\right)^3=22400\Leftrightarrow\left(4a+3\right)^3=64\Leftrightarrow4a+3=4\Leftrightarrow a=\frac{1}{4}\Leftrightarrow k=4\)
Khi đó \(\hept{\begin{cases}x=\frac{40}{4}+30\\y=\frac{20}{4}+15\\z=\frac{28}{4}+21\end{cases}\Leftrightarrow\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}.}}\)