x/3=y/4=z/2 và x mũ 3 - y mũ 3 + z mũ 3 = -29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe
Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)
Ta có:
\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)
\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) (2)
=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
=>\(\frac{x}{9}=-3\)=>x=-27
\(\frac{y}{7}=-3\)=>y=-21
\(\frac{z}{3}=-3\)=>z=-9
Vậy x=-27 ; y=-21 ; z=-9
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3+z^3}{125-64+8}=\dfrac{69}{69}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt[3]{125}=5\\y=\sqrt[3]{64}=4\\z=\sqrt[3]{8}=2\end{matrix}\right.\)
1 + 2xy - x2 - y2
= 1 - ( x2 - 2xy + y2 )
= 12 - ( x - y )2
= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]
= ( y - x + 1 )( x - y + 1 )
a2 + b2 - c2 - d2 - 2ab + 2cd
= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )
= ( a - b )2 - ( c - d )2
= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]
= ( a - b - c + d )( a - b + c - d )
a3b3 - 1
= ( ab )3 - 13
= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]
= ( ab - 1 )( a2b2 + ab + 1 )
x2( y - z ) + y2( z - x ) + z2( x - y )
= z2( x - y ) + x2y - x2z + y2z + y2x
= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )
= z2( x - y ) + xy( x - y ) - z( x2 - y2 )
= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )
= ( x - y )[ z2 + xy - z( x + y ) ]
= ( x - y )( z2 + xy - zx - zy )
= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]
= ( x - y )[ z( z - x ) - y( z - x ) ]
= ( x - y )( z - x )( z - y )
Giải:
1) \(\left(x^2-y\right)^3\)
\(=x^6-3x^4y+4x^2y^2-y^3\)
Vậy ...
2) \(\left(x-2+y\right)^3\)
\(=\left(x-2\right)^3+3\left(x-2\right)^2y+3\left(x-2\right)y^2+y^3\)
\(=x^3-3x^2+16x-2^3+3\left(x^2-4x-4\right)y+3\left(x-2\right)y^2+y^3\)
\(=x^3-3x^2+16x-2^3+3x^2-12x-12y+3\left(xy^2-2y^2\right)+y^3\)
\(=x^3-3x^2+16x-2^3+3x^2-12x-12y+3xy^2-6y^2+y^3\)
\(=x^3+4x-8-12y+3xy^2-6y^2+y^3\)
Vậy ...
3) \(\left(z+y^2\right)^3\)
\(=z^3+3z^2y^2+3zy^4+y^6\)
Vậy ...
4) \(\left(x-y+z\right)^3\)
\(=\left(x-y\right)^3+3\left(x-y\right)^2z+3\left(x-y\right)z^2+z^3\)
\(=x^3-3x^2y+3xy^2-y^3+3\left(x^2-2xy+y^2\right)z+3\left(xz^2-yz^2\right)+z^3\)
\(=x^3-3x^2y+3xy^2-y^3+3x^2-6xy+3y^2z+3xz^2-3yz^2+z^3\)
\(=-3x^2y+3xy^2-y^3+4x^2-6xy+3y^2z+3xz^2-3yz^2+z^3\)
Vậy ...
Theo đầu bài ra ta có :
x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29
áp dụng tc dãy tỉ số = nhau nên ta có :
x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1
x/3=1 => x=3
y/4=1=>x=4
x/2=1=>x=2
vậy x=3 ; y=4 ;z=2
CHUK BẠN LÀM BÀI TỐT NHA
Còn cách nào ko bạn