K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

Theo đầu bài ra ta có :

x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29

áp dụng tc dãy tỉ số = nhau nên ta có :

x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1

x/3=1 => x=3

y/4=1=>x=4

x/2=1=>x=2

vậy x=3 ; y=4 ;z=2

CHUK BẠN LÀM BÀI TỐT NHA

9 tháng 6 2019

Còn cách nào ko bạn

18 tháng 3 2023

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe

18 tháng 3 2023

Theo đầu bài ra ta có :

x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29

áp dụng tc dãy tỉ số = nhau nên ta có :

x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1

x/3=1 => x=3

y/4=1=>x=4

x/2=1=>x=2

vậy x=3 ; y=4 ;z=2

26 tháng 11 2017

what are doing?

26 tháng 11 2017

I am doing homework

23 tháng 8 2017

Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)

          \(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)

                  Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau ta đc:

       \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)

23 tháng 8 2017

Ta có:

\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)

\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)

Từ (1) (2)

=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

=>\(\frac{x}{9}=-3\)=>x=-27

    \(\frac{y}{7}=-3\)=>y=-21

     \(\frac{z}{3}=-3\)=>z=-9

Vậy x=-27 ; y=-21 ; z=-9

5 tháng 10 2021

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)

\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3+z^3}{125-64+8}=\dfrac{69}{69}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt[3]{125}=5\\y=\sqrt[3]{64}=4\\z=\sqrt[3]{8}=2\end{matrix}\right.\)

17 tháng 9 2020

1 + 2xy - x2 - y2

= 1 - ( x2 - 2xy + y2 )

= 12 - ( x - y )2

= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]

= ( y - x + 1 )( x - y + 1 )

a2 + b2 - c2 - d2 - 2ab + 2cd

= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )

= ( a - b )2 - ( c - d )2

= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]

= ( a - b - c + d )( a - b + c - d )

a3b3 - 1

= ( ab )3 - 13

= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]

= ( ab - 1 )( a2b2 + ab + 1 )

x2( y - z ) + y2( z - x ) + z2( x - y )

= z2( x - y ) + x2y - x2z + y2z + y2x

= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )

= z2( x - y ) + xy( x - y ) - z( x2 - y2 )

= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )

= ( x - y )[ z2 + xy - z( x + y ) ]

= ( x - y )( z2 + xy - zx - zy )

= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]

= ( x - y )[ z( z - x ) - y( z - x ) ]

= ( x - y )( z - x )( z - y )

10 tháng 5 2022

D.

24 tháng 6 2018

Giải:

1) \(\left(x^2-y\right)^3\)

\(=x^6-3x^4y+4x^2y^2-y^3\)

Vậy ...

2) \(\left(x-2+y\right)^3\)

\(=\left(x-2\right)^3+3\left(x-2\right)^2y+3\left(x-2\right)y^2+y^3\)

\(=x^3-3x^2+16x-2^3+3\left(x^2-4x-4\right)y+3\left(x-2\right)y^2+y^3\)

\(=x^3-3x^2+16x-2^3+3x^2-12x-12y+3\left(xy^2-2y^2\right)+y^3\)

\(=x^3-3x^2+16x-2^3+3x^2-12x-12y+3xy^2-6y^2+y^3\)

\(=x^3+4x-8-12y+3xy^2-6y^2+y^3\)

Vậy ...

3) \(\left(z+y^2\right)^3\)

\(=z^3+3z^2y^2+3zy^4+y^6\)

Vậy ...

4) \(\left(x-y+z\right)^3\)

\(=\left(x-y\right)^3+3\left(x-y\right)^2z+3\left(x-y\right)z^2+z^3\)

\(=x^3-3x^2y+3xy^2-y^3+3\left(x^2-2xy+y^2\right)z+3\left(xz^2-yz^2\right)+z^3\)

\(=x^3-3x^2y+3xy^2-y^3+3x^2-6xy+3y^2z+3xz^2-3yz^2+z^3\)

\(=-3x^2y+3xy^2-y^3+4x^2-6xy+3y^2z+3xz^2-3yz^2+z^3\)

Vậy ...