Xác định các hệ số a,b,c
\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3+x^2-2\)với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển VT, ta có: \(VT=ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3-x^2+2\)
Đồng nhất hệ số ta có hệ điều kiện:
\(\left\{{}\begin{matrix}a=1\\b+ac=-1\\bc+2a=0\\2b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-2\end{matrix}\right.\)
( ax + b ) ( x2 - cx + 2 ) = x3a + bx2 - acx2 - bcx + 2ax + 2b = x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b
\(\Rightarrow\)x3a + x2 ( b - ac ) - x ( bc - 2a ) + 2b = x3 + x2 - 2
đồng nhất hê số, ta được : a = 1 ; b - ac = 1 ; bc - 2a = 0 ; 2b = -2
\(\Rightarrow\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)
Ta có :
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+\left(b-a\right).x^2-\left(a+b\right).x-b\)
\(=ax^3+cx^2-1\)
\(\Leftrightarrow\hept{\begin{cases}b-a=c\\a+b=0\\b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)
Vậy ...
a: =>6x^2+2xb-15x-5b=ax^2+x+c
=>6x^2+x(2b-15)-5b=ax^2+x+c
=>a=6; 2b-15=1; -5b=c
=>a=6; b=8; c=-40
b: =>ax^3-ax^2-ax+bx^2-bx-b=ax^3+cx^2-1
=>x^2(-a+b)+x(-a-b)-b=cx^2-1
=>-b=-1; -a+b=c; -a-b=0
=>b=1; c=b-a; a=-b=-1
=>c=b-a=1-(-1)=2; b=1; a=-1
\(\left(x^2+cx+2\right)\left(cx+b\right)=x^3+x^2-2\)
Vì đt trên đúng với mọi x nên cho x = 1
\(\Rightarrow\left(1+c+2\right)\left(c+b\right)=0\)
\(\hept{\begin{cases}c=-3\\c=-b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c=-3\\b=3\end{cases};x=1}\)
a) Sửa đề: \(2x^2\left(ax^2+2bx+4c\right)=6x^4-20x^3-8x^2\)
<=> \(2ax^4+4bx^3+8cx^2=6x^4-20x^3-8x^2\)
=> \(\left\{{}\begin{matrix}2a=6\\4b=-20\\8c=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=3\\b=-5\\c=-1\end{matrix}\right.\)
b) Ta có: \(\left(ax+b\right)\left(x^2-cx+2\right)=x^3+x^2-2\)
<=> \(ax^3-acx^2+2ax+bx^2-bcx+2b=x^3+x^2+2\)
<=> \(ax^3+x^2\left(b-ac\right)+x\left(2a-bc\right)+2b=x^3+x^2-2\)
=> \(\left\{{}\begin{matrix}ax^3=x^3\\\left(b-ac\right)x^2=x^2\\\left(2a-bc\right)x=0\\2b=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b-ac=1\\2a-bc=0\\b=-1\end{matrix}\right.\)
=> a,b,c ko có!
P/s: Đề có sai ko!
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3+x^2-2\)
\(\Leftrightarrow ax^{3\:}+\left(ac+b\right)x^2+\left(2a+bc\right)x+2b=x^3+x^2-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\ac+b=1\\2a+bc=0\\2b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\end{matrix}\right.\) ( TM )