K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 6 2019

Đặt \(\sqrt{1+x^2}-\sqrt{1-x^2}=a\)

\(a^2=2-2\sqrt{1-x^4}\Rightarrow\left\{{}\begin{matrix}0\le a\le\sqrt{2}\\2\sqrt{1-x^4}=2-a^2\end{matrix}\right.\)

Phương trình trở thành:

\(m\left(a+2\right)=2-a^2+a-1\)\(\Leftrightarrow m=\frac{-a^2+a-1}{a+2}\)

Xét \(f\left(a\right)=\frac{-a^2+a-1}{a+2}\Rightarrow f'\left(a\right)=\frac{\left(-2a+1\right)\left(a+2\right)+a^2-a+1}{\left(a+2\right)^2}=\frac{-a^2-4a+3}{\left(a+2\right)^2}\)

\(f'\left(a\right)=0\Rightarrow a=-2+\sqrt{7}\)

\(f\left(0\right)=-\frac{1}{2};f\left(\sqrt{2}\right)=\frac{-8+5\sqrt{2}}{2};f\left(-2+\sqrt{7}\right)=5-2\sqrt{7}\)

\(\Rightarrow\) Để pt có nghiệm thì \(-\frac{1}{2}\le m\le5-2\sqrt{7}\)

NV
9 tháng 6 2019

b/ Xét hàm \(f\left(x\right)=\sqrt{1+x^2}-\sqrt{1-x^2}\)

\(f'\left(x\right)=\frac{x}{\sqrt{1+x^2}}+\frac{x}{\sqrt{1-x^2}}=x\left(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1-x^2}}\right)\)

\(f'\left(x\right)=0\Rightarrow x=0\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;1\right]\) và nghịch biến trên \(\left[-1;0\right]\)

\(f\left(0\right)=0;f\left(1\right)=f\left(-1\right)=\sqrt{2}\)

\(\Rightarrow a=0\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 1 điểm duy nhất (tiếp xúc)

\(0< a\le\sqrt{2}\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt

\(\Rightarrow\) Để phương trình đã cho có 4 nghiệm thì \(y=m\) cắt \(y=f\left(a\right)\) tại 2 điểm phân biệt

Dựa vào BBT của câu a ta được: \(\frac{-8+2\sqrt{5}}{2}\le m< 5-2\sqrt{7}\)

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4\left(m^2-4m+6\right)>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Theo đề, ta có: \(\left(\sqrt{x_1}-\sqrt{x_2}\right)^2=4\)

\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)

\(\Leftrightarrow2m-2-2\sqrt{2m-5}=4\)

\(\Leftrightarrow2\sqrt{2m-5}=2m-6\)

\(\Leftrightarrow\sqrt{2m-5}=m-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-6m+9-2m+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-8m+14=0\end{matrix}\right.\)

Đến đây thì dễ rồi, bạn chỉ cần giải pt bậc hai rồi đối chiếu với đk là xong

24 tháng 1 2022

câu a thì làm ntn ạ

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

2 tháng 1 2021

ĐK; \(-1\le x\le3\)

Đặt \(\sqrt{-x^2+2x+3}=t\left(0\le t\le2\right)\)

\(pt\Leftrightarrow m+1=-x^2+2x+3+4\sqrt{-x^2+2x+3}\)

\(\Leftrightarrow m+1=f\left(t\right)=t^2+4t\)

\(f\left(0\right)=0;f\left(2\right)=12\)

Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m+1\le maxf\left(t\right)\)

\(\Leftrightarrow0\le m+1\le12\)

\(\Leftrightarrow-1\le m\le11\)

4 tháng 11 2018

\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)

4 tháng 11 2018

gì vậy ạ

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm