Tính nhanh 1×2+2×3×3×4+...+1999×2000
Giải giúp mik với cảm ơn mọi người!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(S_2=\left(1-3\right)+\left(5-7\right)+..+\left(1997-1999\right)+2001\)
ha y \(S_2=-2-2-2..+2001=-2.500+2001=1001\)
\(S_3=\left(1-2-3+4\right)+\left(5-6-7+8\right)+..+\left(1997-1998-1999+2002\right)\)
hay \(S_3=0+0+..+0=0\)
\(S_2=\left(1-3\right)+\left(5-7\right)+...+\left(1997-1999\right)+2001\)
\(=\left(-2\right)+\left(-2\right)+....+\left(-2\right)+2001=\left(-2\right).500+2001=-1000+2001=1001\)
\(S_3=\left(0+1-2-3\right)+\left(4+5-6-7\right)+...+\left(1996+1997-1998-1999\right)+2000\)
\(=-4+\left(-4\right)+...+\left(-4\right)+2000=\left(-4\right).500+2000=0\)
Tính P = 11+2+11+2+3+11+2+3+4+...+11+2+3+4+...+2021
Chúc bạn học tốt nhé
P=1+1/3+1/6+1/10+…..+1/2021×2022÷2
P/2=1/2+1/6+1/12+1/20+…..+1/2021×2022
P/2=1/1×2+1/2×3+1/3×4+…….+1/2021×2022
P/2=1-1/2+1/2-1/3+1/3-1/4+….+1/2021-1/2022=1-1/2022=2021/2022
P=2021/1011
Chúc bn học tốt
Ta có:
\(C=\dfrac{2n-3}{n-2}=\dfrac{2n-4+1}{n-2}=2+\dfrac{1}{n-2}\)
\(C\in Z\Leftrightarrow\dfrac{1}{n-2}\in Z\Leftrightarrow n-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow...\)
a) \(\left(-1\right)\left[5^2-\left(4^3\right)\right]=\left(-1\right)\left(25-64\right)=\left(-1\right)\left(-39\right)=39\)
b) \(71.64-32.\left(-7\right)+32.11=142.32+32.7+32.11\)
\(=32.\left(142+7+11\right)=32.\left(142+18\right)=32.160=5120\)
c) \(666-\left(-422\right)-100-88=666+422-100-88\)
\(=\left(666+422\right)-\left(100+88\right)=1088-188=900\)
d) \(23-501-343+61-257+16-499\)
\(=\left(23+61+16\right)-\left(501+499\right)-\left(343+257\right)\)
\(=100-1000-600=100-\left(1000+600\right)=100-1600=-1500\)
\(3^x+4\cdot3^{x-2}=333\)
\(\Rightarrow3^{x-2+2}+4\cdot3^{x-2}=333\)
\(\Rightarrow3^{x-2}\cdot\left(3^2+4\right)=333\)
\(\Rightarrow3^{x+2}\cdot\left(9+4\right)=333\)
\(\Rightarrow3^{x+2}\cdot13=333\)
\(\Rightarrow3^{x+2}=333:13\)
\(\Rightarrow3^{x+2}=\dfrac{333}{13}\)
Không có x nào thỏa mãn
⇒ x ∈ ∅
\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)
\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)
\(=\dfrac{75}{101}\)
\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)
\(=\dfrac{100}{2}=50\)
Tính nhanh:
a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\times\dfrac{100}{101}\)
= \(\dfrac{75}{101}\)
b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)
\(=\dfrac{100}{2}\)
\(=50\)
45 x 94 - 2 x 69=6718464 - 20155392 = -13436928
210 x 38 + 68 x 20=6718464+33592320=40310784
\(\left(x-36\right):\left(2.3^2\right)=2^2.3\)
\(\Rightarrow\left(x-36\right):18=12\)
\(\Rightarrow\left(x-36\right)=12.18\)
\(\Rightarrow x-36=216\)
\(\Rightarrow x=216+36\)
\(\Rightarrow x=252\)
(x-36):(2.32)=2.23
⇒ (x-36):(2.9)=2.8
⇒ (x-36):18=16
⇒ x-36=18.16=288
⇒ x=288+36=324
\(\text{Đặt S= biểu thức cần tính}\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+1999.2000.3\)
\(\Rightarrow3S=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+........+1999.2000\left(2001-1998\right)\)
\(\Rightarrow3S=1.2.3-1.2.3+2.3.4-2.3.4+......+1999.2000.2001\)
\(\Rightarrow3S=1999.2000.2001\Rightarrow S=\frac{1999.2000.2001}{3}=2666666000\)