Cho tam giác ABC nhọn có AD và CF là 2 đường cao cắt nhau tại H
a CM tam giác AHF đồng dạng CHD và HA.HD=HC.HF
b CM tam giác NDA đòng dạng BFC và BF.BA=BD.BC
c Cm góc BFD = BCA
d Gọi BE là đg cao thứ 3 của tma giác ABC . Giao điểm của BE và DF là I .
CM FH là đường phân giác của tam giác IFA và BI.HE=BE.HI
Ai đó....nhân tài nào help cái với ...câu d ...câu d đã tấn công mình @_@
hình bạn tự vẽ nha
a, Xét \(\Delta AHF\)và \(\Delta CHD\)có
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g\cdot g\right)\)\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow HA\cdot HD=HC\cdot HF\)
Ý b hình như bạn chép thiếu