Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Ngọc Duyên DJ - Toán lớp 8 - Học toán với OnlineMath
câu trả lời đã được đăng cách đây 2 ngày nhé
Hình bạn tự vẽ nha
a, Xét \(\Delta AHF\) và \(\Delta CHD\) có
\(\widehat{HFA}\)=\(\widehat{HDC}\)=\(90^o\)
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\Rightarrow\Delta AHF\infty\Delta CHD\)( g-g)
\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow AH\cdot HD=CH\cdot HF\)
hình bạn tự vẽ nha
a, Xét \(\Delta AHF\)và \(\Delta CHD\)có
\(\widehat{AHF}=\widehat{CHD}\)(đối đỉnh)
\(\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g\cdot g\right)\)\(\Rightarrow\frac{AH}{CH}=\frac{HF}{HD}\)\(\Rightarrow HA\cdot HD=HC\cdot HF\)
a: Xét ΔAHF vuông tại F và ΔCHD vuông tại D có
góc AHF=góc CHD
Do đó: ΔAHF đồng dạng với ΔCHD
b: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
góc B chung
Do đó: ΔBFC đồng dạng với ΔBDA
Suy ra: BF/BD=BC/BA
hay \(BF\cdot BA=BC\cdot BD\) và BF/BC=BD/BA
c: Xét ΔBFD và ΔBCA có
BF/BC=BD/BA
góc FBD chung
Do đó:ΔBFD đồng dạng với ΔBCA
a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co
góc B chung
=>ΔBDA đồng dạng vói ΔBFC
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng vói ΔACB
c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng vói ΔADC
=>AD*AH=AE*AC
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng vói ΔCFA
=>CH*CF=CE*CA
=>AH*AD+CH*CF=CA^2
A B C D F H E
Bài làm:
a, \(\Delta AHF\&\Delta CHD\)Có:
\(\widehat{AHF}=\widehat{CHD}\left(đv\right),\widehat{AFH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta AHF\infty\Delta CHD\left(g.g\right)\)
\(\Rightarrow\frac{HA}{HC}=\frac{HF}{HD}\Rightarrow HA.HD=HC.HF\)
b, Sửa N thành B
\(\Delta BAD\&\Delta BCF\)Có:
\(\widehat{B}chung,\widehat{D}=\widehat{F}=90^o\)
\(\Rightarrow\Delta BAD\infty\Delta BCF\left(g.g\right)\)
\(\Rightarrow\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow BF.BA=BD.BC\)
c,Vì \(\frac{BA}{BC}=\frac{BD}{BF}\Rightarrow\frac{BD}{BA}=\frac{BF}{BC}\)
\(\Delta BFD\&\Delta BCA\)Có:
\(\widehat{B}chung,\frac{BF}{BC}=\frac{BD}{BA}\)
\(\Rightarrow\)\(\Delta BFD\infty\Delta BCA\left(c.g.c\right)\)
\(\Rightarrow\widehat{BFD}=\widehat{BCA}\)
d, chưa nghĩ ra
mình thì chỉ cần câu d mà lại, haizz , khó quá mà :))