K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

Bài 1:

\(M\left(1\right)=a+b+6\)

Mà \(M\left(1\right)=0\)

\(\Rightarrow a+b+6=0\)

\(\Rightarrow a+b=-6\)( * )

\(\Rightarrow2a+2b=-12\) (1)

Ta có: \(M\left(-2\right)=4a-2b+6\)

Mà \(M\left(-2\right)=0\)

\(\Rightarrow4a-2b=-6\)(2)

Lấy (1) cộng (2) ta được:

\(6a=-18\)

\(a=-3\)

Thay a=-3 vào (* ) ta được:

\(b=-3\)

Vậy a=-3 ; b=-3

31 tháng 5 2019

Bài 2:

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\left(1-2y\right).x=5.8\)

\(\Leftrightarrow\left(1-2y\right).x=40\)

Vì \(x,y\in Z\Rightarrow1-2y\in Z\)

mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)

Thử từng TH

31 tháng 5 2019

c) Cho \(P(x)=100x^{100}+99x^{99}+98x^{98}+...+2x^2+x\).Tính P(-1)

15 tháng 8 2018

P(1)=100+99+...+2+1=\(\frac{100\left(100+1\right)}{2}=5050\)

1 tháng 6 2019

P(1)=5050                                                                                                                                                                                                                                       Hok tốt ~!!!!

9 tháng 8 2017

thoi minh luoi lam minh ko giai het duoc dau

9 tháng 8 2017

- Đề bài bài 4 nhầm nha. 

- Phải là : 19^x + 5^y + 1980z = 1975^430 + 2004

23 tháng 6 2019

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6

           = -6a - 6 = -6(a + 1) \(⋮\)6

<=> -6(a + 1) \(⋮\)\(\forall\)\(\in\)Z

<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)\(\in\)Z

6. Thay x = 99 vào biểu thức A, ta có:

A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9

A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9

A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9

A = 99 - 9 

A = 90

Vậy ....

Bài 3:

(3x-1)(2x+7)-(x+1)(6x-5)=16.

=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16

=>  6x2+21x-2x-7-6x2+5x-6x+5=16

=> 18x-2=16

=> 18x=16+2

=> 18x=18

=> x=1

Bài 4:

ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)⋮6\)

⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)

Bài 6:

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)

\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)

Thay 99=x, ta được:

\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)

\(\Rightarrow A=x-9\)

Thay x=99 ta được:

\(A=99-9=90\)

6 tháng 2 2020

\(\text{Ta có:}2;6;10;...;8010\text{ đều chia 4 dư 2}\)

\(\Rightarrow X\equiv2^2+3^2+4^2+....+2004^2\left(mod\text{ }10\right)\)

\(\text{ mà:}1^2+2^2+3^2+....+2004^2=\frac{2004.2005.4009}{6}=333.2005.4009\)

\(\Rightarrow X\equiv333.2005.4009-1\left(\text{mod 10}\right)\equiv3.5.9-1\equiv4\left(\text{mod 10}\right)\)

Vậy X có chữ số tận cùng là 4

6 tháng 2 2020

\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2^{10}-1}\)

\(< 1+\frac{1}{2}+\frac{1}{2}+\left(\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}\right)+..........\left(\frac{1}{2^9}+\frac{1}{2^9}+....+\frac{1}{2^9}\left(\text{512 số hạng }\frac{1}{2^9}\right)\right)\)

\(=1+1+1+1+1+1+1+1+1+1\)

\(=10\left(\text{điều phải chứng minh}\right)\)

\(\text{bài 2 câu b tương tự câu a}\)

9 tháng 7 2019

1,+) Thay x = 5 vào biểu thức A, ta có:

A = 4.52 - 5.|5| + 2.|3 - 5|

A = 4.25 - 5.5 + 2.2

A = 100 - 25 + 4

A = 75 + 4 = 79

Thay x = 3 vào biểu thức A, ta có:

A = 4.32 - 5.|3| + 2.|3 - 3|

A = 4.9 - 5.3 + 2.0

A = 36 - 15 = 21

+) Ta có: B = xy + x2y2 + x3y + ... + x100y100

             B = xy + (xy)2 + (xy)3 + ... + (xy)100

Thay x = 1; y=  -1 vào biểu thức B, ta có:

B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ...  + [1.(-1)]100

B = -1 + 1 - 1 + ... + 1

B = 0

+) Thay x = 1 vào C, ta có:

C = 100.1100 + 99.199 + 98.198 + ... + 2.12  + 1

C = 100 + 99 + 98 + ... + 2 + 1

C = (100 + 1).[(100 - 1) : 1 + 1] : 2

C = 101.100 : 2

C = 5050

+) Thay x = 99 vào biểu thức D, ta có:

D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1

D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99  + 1).9996 + ... + (99 + 1).99 - 1

D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1

D = 99 - 1 = 98

18 tháng 4 2016

\(P\left(1\right)=100+99+..+2+1\)

           \(101.50=5050\)