K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Hỏi đáp Toán

6 tháng 7 2018

 Với m ≠ -1

    Ta có: Δ   =   ( m   -   3 ) 2   ≥   0 , do đó phương trình luôn luôn có hai nghiệm x 1 ,   x 2

    Lúc đó phương trình đã cho có hai nghiệm x = -1 và x = 4.

20 tháng 2 2019

24 tháng 3 2019

chị lên hh nhá , sẽ có giáo viên giảng cho 

24 tháng 3 2019

ở đâu

 lazi á

em gửi link ik chị vào liền

19 tháng 12 2017

Xét phương trình x 2 – (2m – 3)x + m 2 – 3m = 0 có a = 1 0 và

∆ = ( 2 m – 3 ) 2   –   4 ( m 2 – 3 m ) = 9 > 0    

Phương trình luôn có hai nghiệm phân biệt x 1 ;   x 2

Áp dụng định lý Vi-ét ta có: x 1 + x 2 = 2 m – 3 ; x 1 . x 2 = m 2 – 3 m

Ta có 1 < x 1 < x 2 < 6

⇔ x 1 − 1 x 2 − 1 > 0 x 1 + x 2 > 1 x 1 − 6 x 2 − 6 > 0 x 1 + x 2 < 12 ⇔ x 1 x 2 − x 1 + x 2 + 1 > 0 x 1 + x 2 > 1 x 1 x 2 − 6 x 1 + x 2 + 36 > 0 x 1 + x 2 < 12 ⇔ m 2 − 3 m − 2 m + 3 + 1 > 0 2 m − 3 > 1 m 2 − 3 m − 6 2 m − 3 + 36 > 0 2 m − 3 < 12 ⇔ m 2 − 5 m + 4 > 0 2 m > 4 m 2 − 15 m + 54 > 0 2 m < 15 ⇔ m < 1 m > 4 m > 2 m < 6 m > 9 m < 15 2

⇔ 4 < m < 6

Đáp án: D

NV
5 tháng 4 2021

\(ac=-10< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-10\end{matrix}\right.\)

Kết hợp hệ thức Viet và đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1-x_2=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+8}{2}\\x_2=\dfrac{-m-8}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=-10\)

\(\Rightarrow\left(\dfrac{-m+8}{2}\right)\left(\dfrac{-m-8}{2}\right)=-10\)

\(\Leftrightarrow m^2-64=-40\Rightarrow m^2=24\)

\(\Rightarrow m=\pm2\sqrt{6}\)

2 tháng 8 2017

Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1  0 và

∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24

Phương trình có hai  x 1 ;   x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0

Áp dụng định lý Vi – ét ta có x 1 + x 2   = 2 ( m + 4 ) ;   x 1 . x 2 = m 2   –   8

Ta có:

A = x 1 + x 2 − 3 x 1 x 2

= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 =  − 3 m 2 − 2 3 m − 32 3

= − 3 m − 1 3 2 + 97 3

Nhận thấy A ≤ 97 3  và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3  (TM)

Vậy giá trị lớn nhất của A là 97 3 khi  m = 1 3

Đáp án: A

\(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\)>=0 với mọi m

=>Phương trình luôn có hai nghiệm

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=5\)

=>\(m^2-2\left(m-1\right)-5=0\)

=>\(m^2-2m-3=0\)

=>(m-3)(m+1)=0

=>\(\left[{}\begin{matrix}m-3=0\\m+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

 

NV
24 tháng 12 2020

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2