Cho a,b,c là 3 số thực dương, tìm GTNN của biểu thức
\(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=a-\frac{ac}{c+a^2}+b-\frac{ab}{a+b^2}+c-\frac{bc}{b+c^2}$
$=\sum a-\sum \frac{ac}{c+a^2}$
Áp dụng BĐT AM-GM: $c+a^2\geq 2a\sqrt{c}$
$\Rightarrow A\geq \sum a-\frac{1}{2}\sum \sqrt{c}$
Áp dụng BĐT Cauchy-Schwarz:
$(\sum \sqrt{c})^2\leq (c+a+b)(1+1+1)$
$\Rightarrow \sum \sqrt{c}\leq 3\sum a$
Do đó $A\geq \sum a-\frac{1}{2}\sqrt{3\sum a}$
Đặt $\sqrt{3\sum a}=t$ thì $A\geq \frac{t^2}{3}-\frac{t}{2}(*)$
Từ điều kiện $ab+bc+ac=3abc\Rightarrow 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
Áp dụng BĐT Cauchy-Schwarz:
$3=\sum \frac{1}{a}\geq \frac{9}{\sum a}\Rightarrow \sum a\geq 3$
$\Rightarrow t=\sqrt{3\sum a}\geq 3$
Do đó:
$\frac{t^2}{3}-\frac{t}{2}=(t-3)(\frac{t}{3}+\frac{1}{2})+\frac{3}{2}\geq \frac{3}{2}$ với mọi $t\geq 3(**)$
Từ $(*); (**)\Rightarrow A\geq \frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$ khi $a=b=c=1$
Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)
Dễ thấy \(P-S=0\)
\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)
Ta chứng minh:
\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)
\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)
\(\Rightarrow P\ge1\)
\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)
\(\Leftrightarrow\)\(\frac{1+a^3}{1+ab^2}\ge\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}\)
\(\Rightarrow\)\(3P\ge\Sigma\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}+2\Sigma\frac{1+a^3}{1+ab^2}\ge9\sqrt[9]{\frac{\Pi\left(1+ab^2\right)^2}{\Pi\left(1+a^3\right)^2}\left(\frac{\Pi\left(1+a^3\right)}{\Pi\left(1+ab^2\right)}\right)^2}=9\)
\(\Rightarrow\)\(P\ge3\)
dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{4abc}\)
\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+ac+bc}\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}\ge\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}\right)-\frac{3}{2}\left(1\right)\)
Lại có:\(\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2+2\left(ab+bc+ac\right)}{30\left(a^2+b^2+c^2\right)}\)
\(=\frac{1}{30}+\frac{1}{15}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\left(2\right)\).Từ (1);(2) có:
\(P=\frac{1}{30}-\frac{3}{2}+\frac{1}{5}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)+\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ca}\right)-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
\(=\frac{1}{15}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{ab+bc+ca}{a^2+b^2+c^2}-22\right)\ge-\frac{4}{3}\)
đề thi hsg toán lớp 9 tỉnh thanh hóa năm 2016-2017 mà
Theo em nghĩ bài này ko thiếu điều kiện đâu cô quản lí ạ !!!
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(ab+1\right)^2\le\left(a^2+1\right)\left(b^2+1\right)\)
Áp dụng BĐT AM-GM, ta có:
\(a^2+1=a.a.1+1\le\frac{a^3+a^3+1}{3}+1=\frac{2.\left(a^3+2\right)}{3}\)
\(b^2+1=b.b.1+1\le\frac{b^3+b^3+1}{3}+1=\frac{2.\left(b^3+2\right)}{3}\)
Do đó:
\(\left(ab+1\right)^2\le\frac{4}{9}\left(a^3+2\right)\left(b^3+2\right)\)
\(\Rightarrow ab+1\le\frac{2}{3}\sqrt{\left(a^3+2\right)\left(b^3+2\right)}\)
\(\Rightarrow\frac{a^3+2}{ab+1}\ge\frac{3}{2}.\sqrt{\frac{a^3+2}{b^3+2}}\) \(\left(1\right)\)
Tương tự, ta có:
\(\frac{b^3+2}{bc+1}\ge\frac{3}{2}.\sqrt{\frac{b^3+2}{c^3+2}}\) \(\left(2\right)\)
\(\frac{c^3+2}{ca+1}\ge\frac{3}{2}.\sqrt{\frac{c^3+2}{a^3+2}}\) \(\left(3\right)\)
Cộng theo vế của \(\left(1\right)\), \(\left(2\right)\) và \(\left(3\right)\) và áp dụng BĐT AM-GM, ta có:
\(G\ge\frac{3}{2}\left(\sqrt{\frac{a^3+2}{b^3+2}}+\sqrt{\frac{b^3+2}{c^3+2}}+\sqrt{\frac{c^3+2}{a^3+2}}\right)\) \(\ge\frac{3}{2}.3\sqrt[3]{\sqrt{\frac{a^3+2}{b^3+2}}.\sqrt{\frac{b^3+2}{c^3+2}}.\sqrt{\frac{c^3+2}{a^3+2}}}=\frac{9}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Vậy: \(G_{min}=\frac{9}{2}\Leftrightarrow a=b=c=1\)
Nếu có thể thì cô Chi check xem nick Đinh Uyển Tình và Đông Phương Lạc có cùng địa chỉ máy tính không ạ??
Bạn Đông Phương Lạc tự đăng tự tl ko bt nhục à
kết bạn với mình
\(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2c+b^2c}{c^3+abc}+\frac{b^2a+c^2a}{a^3+abc}+\frac{c^2b+a^2b}{b^3+abc}\)
\(\ge\frac{a^3}{2abc}+\frac{b^3}{2abc}+\frac{c^3}{2abc}+\frac{2abc}{c^3+abc}+\frac{2abc}{a^3+abc}+\frac{2abc}{b^3+abc}\)
\(=\left(\frac{a^3}{2abc}+\frac{2abc}{a^3+abc}\right)+\left(\frac{b^3}{2abc}+\frac{2abc}{b^3+abc}\right)+\left(\frac{c^3}{2abc}+\frac{2abc}{c^3+abc}\right)\)
Xét: \(\frac{a^3}{2abc}+\frac{2abc}{a^3+abc}=\frac{a^3}{2abc}+\frac{1}{2}+\frac{1}{\frac{a^3}{2abc}+\frac{1}{2}}-\frac{1}{2}\ge2\sqrt{\left(\frac{a^3}{2abc}+\frac{1}{2}\right).\frac{1}{\frac{a^3}{2abc}+\frac{1}{2}}}-\frac{1}{2}=\frac{3}{2}\)
Tương tự với 2 cặp còn lại
Vậy ta có: \(P\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}=\frac{9}{2}\)
"=" xảy ra <=> a=b=c