K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

Mình không vẽ được hình mong bạn thông cảm 

a, Chắc bạn làm rồi

b, Sử dụng tính chất 2 tiếp tuyến cắt nhau

=>\(\hept{\begin{cases}AP=IP\\IQ=BQ\\MA=MB\end{cases}}\)

Khi đó \(P_{MPQ}=MP+AP+MQ+QB=MA+MB=2a\)(đpcm)

c, Vì H là trực tâm của tam giác MAB

=>\(AH\perp MB\)

MÀ \(MB\perp OB\)

=> \(AH//OB\)

CMTT=>\(BH//AO\)

=> tứ giác AHBO là hình bình hành

=>AH=OB=R

MÀ A cố định 

=> \(H\in\left(A,R\right)\)cố định

Vậy H thuộc đường tròn  tâm A bán kính R cố định

a: Xét ΔMAO và ΔMCO có

MA=MC

AO=CO

MO chung

=>ΔMAO=ΔMCO

=>góc MCO=90 độ

góc MAO+góc MCO=180 độ

=>MAOC nội tiếp đường tròn đường kính MO

=>I là trung điểm của MO

b: góc MCO=90 độ

=>MC là tiếp tuyến của (O)

Xét ΔMCD và ΔMBC có

góc MCD=góc MBC

góc CMD chung

=>ΔMCD đồng dạng với ΔMBC

=>MC/MB=MD/MC

=>MC^2=MB*MD

9 tháng 4 2022

a) Tứ giác EFMK có góc E và góc M vuông (vì đều bằng các góc chắn nửa đường tròn) nên là tứ giác nội tiếp.

b) Ta có 

\widehat{HAF}=\widehat{ABE} (Góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung);

\widehat{EAM}=\widehat{EBM} ( góc nội tiếp cùng chắn cung \stackrel\frown{EM})

mà \widehat{HAF}=\widehat{EAM} (AE là tia phân giác góc IAM)

nên \widehat{ABE}=\widehat{EBM}, hay BE là tia phân giác góc ABM.

Mặt khác BE cũng là đường cao trong tam giác ABF nên tam giác ABF cân tại B.

c) Tam giác HAK có AE vừa là phân giác vừa là đường cao nên nó cân tại A. Suy ra E là trung điểm HK.

Tứ giác HFKA có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.

d) HFKA là hình thoi nên FK // HA, suy ra tứ giác IFKA là hình thang.

Để IFKA nội tiếp được đường tròn thì nó phải là hình thang cân, hay tam giác MIA vuông cân tại M.

Khi đó, \widehat{IAM}=45^{\circ}\Rightarrow\widehat{MAB}=45^{\circ}, tam giác MAB vuông cân tại M. Do đó M là điểm chính giữa cung nửa đường tròn AB.

28 tháng 5 2021

a.Có MA,MB là tiếp tuyến của (O) cắt nhau tại M (gt)
=> MA=MB
Có MA,MC là tiếp tuyến của (O') cắt nhau tại M (gt)
=> MA=MC
Bắc cầu ta được MA=MB=MC

12 tháng 2 2019

.mn kb nha

20 tháng 10 2023

A B x y C D M O

a/

Xét tg vuông OAC và tg vuông OMC có

OA=OM=R

OC chung

=> tg OAC = tg OMC  (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)

Tương tự ta cũng có

tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)

\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)

b/

AB+BD nhỏ nhất khi \(M\equiv B\)