Cho tam giác ABC có AB < AC , phân giác AD. Trên tia AC lấy điểm E sao cho AE = AB .
a, Chứng minh BD = ED
b, AB cắt ED ở K . Chứng minh tam giác DBK = tam giác DEC
c, Chứng minh : tam giác AKC là tam giác cân
d, AD vuông góc KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
2) Ta có: ΔABD=ΔAED(cmt)
nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)(cmt)
nên \(\widehat{KBD}=\widehat{CED}\)
Xét ΔDBK và ΔDEC có
\(\widehat{KBD}=\widehat{CED}\)(cmt)
BD=ED(cmt)
\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDBK=ΔDEC(g-c-g)
3) Ta có: ΔDBK=ΔDEC(cmt)
nên BK=EC(hai cạnh tương ứng)
Ta có: AB+BK=AK(B nằm giữa A và K)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(gt)
và BK=EC(cmt)
nên AK=AC
Xét ΔAKC có AK=AC(cmt)
nên ΔAKC cân tại A(Định nghĩa tam giác cân)
Lười đánh máy thật sự:vvv
a) Xét ∆ABD và ∆AED:
AD: cạnh chung
AB=AE(gt)
\(\widehat{BAD}=\widehat{CAD}\) (AD là phân giác góc BAC)
=> ∆ABD=∆AED (c.g.c)
=> BD=DC
b) Theo câu a: ∆ABD=∆AED
=> \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{DBK}=180^o\\\widehat{AED}+\widehat{DEC}=180^o\end{matrix}\right.\)
\(\Rightarrow\widehat{DBK}=\widehat{DEC}\)
Xét ∆DBK và ∆DEC:
BD=ED(cm ở a)
\(\widehat{DBK}=\widehat{DEC}\left(cmt\right)\)
\(\widehat{BDK}=\widehat{EDC}\) ( 2 góc đối đỉnh)
=> ∆DBK=∆DEC (g.c.g)
c) Gọi giao điểm của AD và BE là I
Xét ∆BAI và ∆EAI:
AB=AE(gt)
\(\widehat{BAI}=\widehat{EAI}\left(gt\right)\)
AI: cạnh chung
=> ∆BAI=∆EAI (c.g.c)
=> \(\left\{{}\begin{matrix}BI=EI\left(1\right)\\\widehat{AIB}=\widehat{AIE}\end{matrix}\right.\)
Mà \(\widehat{AIB}+\widehat{AIE}=180^o\) (2 góc kề bù)
=> \(\widehat{AIB}=\widehat{AIE}=90^o\left(2\right)\)
Từ (1) và (2) suy ra AD là trung trực của BE.
a) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AE chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
b) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
b/ Xét 2 TG ABC và TG AEK,ta có:
A chung
E=B (2 TG = nhau câu a)
AB=AE (gt)
=>TG ABC=TG AEK (g-c-g)
=>AK=AC (cặp cạnh tương ứng)
Ta có :AK=AB+AC
AC=AE+EC
Mà AC=Ak
AB=AE
=>BK=EC
Xét 2 TG DBK và TG DEC,ta có:
BK=EC(cmt)
Góc BDK = góc EDC (đối đỉnh)
BD=ED(câu a)
=>TG DBK=TG DEC (c-g-c)
c/Vì AK=AC (TG AKE=TG ACB) nên TG AKC cân tại A
Cho tam giac ABC có AB < AC; AD là phân giác của goc A. Trên cạnh AC lấy điểm E sao cho AB = AE.
a. Chứng minh tam giac ABD = tam giac AED
b. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh tam giac FBD = tam giac CED và DF = DC
c. Chứng minh AD vuong goc voi CE d. Chứng minh BE // CF.
( giup minh voi cac ban oi )
a )
Xét tam giác BAD và tam giác EAD có :
AE=AB ( gt )
\(\widehat{BAD}=\widehat{AED}\) ( do AD là tia p/g của \(\widehat{A}\))
AD là cạnh chung
nên tam giác BAD = tam giác EAD
=> BD = ED ( hai cạnh tương ứng )
b ) cÓ : \(\widehat{DBA}+\widehat{DBK}=180^o\)( hai góc kề bù)
\(\widehat{DEA}+\widehat{DEC}=180^o\)( hai góc kề bù )
mà \(\widehat{DEA}=\widehat{DBA}\Rightarrow\widehat{DBK}=\widehat{DEC}\)
xÉT tam giác DBK và tam giác DEC có :
\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )
BD = ED ( cm phần a )
\(\widehat{BDK}=\widehat{EDC}\)( hai góc đối đỉnh )
nên tam giác DBK = tam giác DEC ( g.c.g)
à phần a tam giác BAD = tam giác EAD ( c.g.c ) nhé!