chứng tỏ rằng 14n+3/21n+5 là phân số tối giản với moi thuộc z
A=5^2/1.6+5^2/6.11+.....+5^2/26.31>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử UCLN(14n+3;21n+5)=d
14n+3 chia hết cho d nên 42n+9 chia hết cho d
21n+5 chia hết cho d nên 42n+10 chia hết cho d
vay 1 chia hết cho d, d=1
Vậy phân số tối giản
Giải:
Gọi ƯC(14n+3;21n+5)=d
⇒14n+3 ⋮ d ⇒3.(14n+3) ⋮ d ⇒42n+9 ⋮ d
21n+5 ⋮ d 2.(21n+5) ⋮ d 42n+10 ⋮ d
⇒(42n+10)-(42n+9) ⋮ d
⇒ 1 ⋮ d
⇒d=1
Vậy 14n+3/21n+5 là phân số tối giản.
Chúc bạn học tốt!
Đặt \(\left(14n+3,21n+5\right)=d\).
Suy ra
\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Gọi d = ƯCLN ( 14n + 3 , 21n + 5 )
Xét hiệu :
\(\left(21n+5\right)-\left(14n+3\right)⋮d\)
\(2\left(21n+5\right)-3\left(14+3\right)⋮d\)
\(42n+10-42n-9⋮d\)
\(10-9⋮d\)
\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)
Vậy....
#Louis
Gọi \(d\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(42n+9\right)⋮d\\\left(42n+10\right)⋮d\end{cases}}\)
\(\Rightarrow\left(42n+10\right)-\left(42+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1\right\}\)
\(\Rightarrow1\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\frac{14n+3}{21n+5}\)là phân số tối giản
A=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+....+\frac{5^2}{26.31}\)
=>A=5.(\(\frac{5}{1.6}+\frac{5}{6.11}+....+\frac{5}{26.31}\))
=>A=5.(\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\))
=>A=5.(\(\frac{1}{1}-\frac{1}{31}\))
=>A=5.\(\frac{30}{31}\)
=>A=\(\frac{150}{31}\)
=>A>1( vì tử của A lớn hơn mẫu )
a, gọi ƯCLN(14n+3;21n+5)=d
=> \(\left\{{}\begin{matrix}14n+3\\21n+5\end{matrix}\right.\)⋮d =>\(\left\{{}\begin{matrix}3\left(14n+3\right)\\2\left(21n+5\right)\end{matrix}\right.\)⋮d=>\(\left\{{}\begin{matrix}42n+9\\42n+10\end{matrix}\right.\)⋮d
=>(42n+10)-(42n+9)⋮d
=>1⋮d
=>d=1
Do ƯCLN của 14n+3 ; 21n+5 là 1
=> 2 số trên là hai số nguyên tố cùng nhau
=>hai số đó nếu chia cho nhau thì sẽ ko chia hết
=> hai số đó khi biểu diễn ở dạng phân số thì sẽ thành phân số tối giản