Cho các số a ,b ,b không âm , có tổng bằng 1 .chứng minh
Sqrt(a²+b²) + sqrt(b²+ c²) + sqrt(c²+a²) 》sqrt(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)
\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)
xét hiệu:
1-4(a2b2+b2c2+c2a2)-a2-b2-c2
=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)
=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)
ta có:
\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)
\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)
\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)
\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
=>đpcm
dấu"=" xảy ra khi 1 số=1;2 số còn lại =0
\(A=\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\Rightarrow A^2=\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\Rightarrow A^2\le\left(1+1+1\right)\left(\sqrt{a+1}^2+\sqrt{b+1}^2+\sqrt{c+1}^2\right)\left(bunhiacopxki\right)\)
\(\Rightarrow A^2\le\left(1+1+1\right)\left(a+1+b+1+c+1\right)\)
\(\Rightarrow A^2\le3\left(a+b+c+3\right)=3.4=12\Rightarrow A\le\sqrt{12}< 3,5\left(dpcm\right)\)
Ta có \(\sqrt{1+a}\le\frac{a\:+1+1}{2}=\frac{a+2}{2}\)
Tương tự \(\sqrt{1+b}\le\frac{b+2}{2}\)
\(\sqrt{1+C}\le\frac{c+2}{2}\)
Từ đó ta có \(\sqrt{1+a}+\sqrt{1+b}+\sqrt{1+c}\)<= \(\frac{a+b+c+6}{2}=\frac{7}{2}\)= 3,5
Bạn alibaba nguyễn hình như đọc không kĩ đề thì phải, ở đây ng ta bảo chứng minh bé hơn đâu phải bé hơn hoặc bằng đâu mà bạn dừng lại ở đó không giải tiếp ? ĐOạn sau các bạn làm như này nhé :
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a+1=1\\b+1=1\\c+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}}\)(Vô lý)
vậy dấu "=" không xảy ra => \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
Theo BĐT C-S:
\(S^2=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)^2\)
\(\le\left(1+1+1+1\right)\left(a+b+c+d\right)\)
\(=4\cdot\left(a+b+c+d\right)=4\left(a+b+c+d=1\right)\)
\(\Rightarrow S^2\le4\Rightarrow S\le2\)
Đẳng thức xảy ra khi a=b=c=d=1/4
Áp dụng bđt Bunhiacopxki được \(\left(a+b\right)^2\le\left(1+1\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\)
Chứng minh tương tự \(\hept{\begin{cases}\sqrt{b^2+c^2}\ge\frac{b+c}{\sqrt{2}}\\\sqrt{c^2+a^2}\ge\frac{c+a}{\sqrt{2}}\end{cases}}\)
Cộng 3 bđt lại được
\(VT\ge\frac{2\left(a+b+c\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Dấu "=" <=> a= b = c = 1/3