K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung 

=>tg ABC đ.dạng vs tg MDC(g.g)

b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung

=>tg ABC đ.dạng vs tg MBI(g.g)  =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)

4 tháng 4 2021

a) Xét \(\Delta ABC\)và \(\Delta MDC\)

 Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)

\(\widehat{C}\)là góc chung

\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)

b) Xét \(\Delta BIM\)và \(\Delta BCA\)

Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)

\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)

\(\Rightarrow BI\text{.}BA=BM.BC\)

C H I B D A

24 tháng 4 2023

giup mik vs

 

a: Xét ΔCAB và ΔCMF có

góc CAB=góc CMF

góc  C chung

=>ΔCAB đồng dạng với ΔCMF

b: Xét ΔBME và ΔBAC có

góc BME=góc BAC

góc B chung

=>ΔBME đồng dạng với ΔBAC

=>BM/BA=BE/BC

=>BE*BA=BM*BC

c: góc CME+góc CAE=180 độ

=>CAEM nội tiếp

=>góc BAM=góc ECB

6 tháng 7 2021

a, Xét ▲ABC  và ▲MDC có:

∠CAB=∠DMC (=90o)

∠DCB chung

=> ▲ABC∼▲MDC (g.g)

b, Xét ▲MBI và ▲ABC có:

∠CAB=∠IMB (=90o)

∠ABC chung

=> ▲MBI∼▲ABC (g.g)

=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC

c, Xét ▲ADB và ▲KIB có:

∠DAB=∠CKB (=90o)

∠DBA chung

=> ▲ADB∼▲KIB (g.g)

=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB

Xét ▲DKC và ▲IAC có:

∠DKC=∠IAC (=90o)

∠DCK chung

=> ▲DKC∼▲IAC (g.g)

=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC

Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi

CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi

nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M

 

 

6 tháng 7 2021

d, Xét ▲BMA và ▲BIC có:

\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)

∠ACB chung

=> ▲BMA ∼▲BIC (c.g.c)

=> ∠BAM=∠BCI 

Xét ▲CAI và ▲BKI có:

∠CAI=∠BKI (=90o)

∠AIC=∠KIB (đ.đ)

=> ▲CAI ∼▲BKI (g.g)

=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)

Xét ▲IAK và ▲ICB có:

\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)

∠AIK=∠CIB (đ.đ)

=> ▲IAK ∼▲ICB (g.g)

=> ∠KAB=∠BCI

mà ∠BAM=∠BCI 

nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)

 

 

a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMD đồng dạng với ΔCAB

b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có

góc B chung

=>ΔBMI đồng dạng với ΔBAC

=>BM/BA=BI/BC

=>BM*BC=BA*BI

a: Xét ΔMHC và ΔMKC có

CH=CK

\(\widehat{HCM}=\widehat{KCM}\) 

CM chung

Do đó: ΔMHC=ΔMKC

Suy ra: MH=MK