cho một số tự nhiên A . người ta đổi chỗ các chữ số của số A để được số B gấp 3 lần số A . chứng tỏ rằng B chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để 2007ab chia hết cho 2 và 5 thì : b=0.
Thay b=0 có 2007a0.
Để 2007a0 chia hết cho 9 thì :2+0+0+7+a+0 chia hết cho 9
Suy ra a=0 hoặc 9
Vậy a=0 hoặc 9
b=0.
Còn bài 2 mik ko biết làm.
2007ab chia hết cho 2 và 5 => b = 0 ta có số 2007a0
2007a0 chia hết cho 9 => tổng các chữ số chia hết cho 9 => a = 0 hoặc 9 ta có số 200700 hoặc 200790
=> a,b = 0,0 hoặc 9,0
Vậy a,b = 0,0 hoặc 9,0
Theo đầu bài, ta suy ra được B = 3A (1)
=> B chia hết cho 3.
Nhưng tổng các chữ số của A và B như nhau (vì người ta chỉ đổi vị trí).
=> A cũng chia hết cho 3. (2)
Từ 1 và 2 => B chia hết cho 9 => B chia hết cho 9 (3)
Từ 1 và 3 => B chia hết cho 27
Theo đầu bài, ta suy ra được B = 3A (1)
=> B chia hết cho 3.
Nhưng vì tổng các chữ số của A và B như nhau (người ta chỉ đổi chỗ các chữ số)
=> A chia hết cho 3. (2)
Từ (1) và (2) => B chia hết cho 9 => A chia hết cho 9 (3)
Từ (1) và (3) => B chia hết cho 27.
Ta có:
b=3a => b chia hết cho 3 => tổng các chữ số của b chia hết cho 3 mà tổng các chữ số của b= tổng các chữ số của a => a chia hết cho 3. Ta có 3 chia hết cho 3, a chia hết cho 3 nên 3a chia hết cho 9 => b chia hết cho 9 => tổng các chữ số của b chia hết cho 9 => a chia hết cho 9 vì tổng các chữ số của a = tổng các chữ số của b( đpcm)
Ta có: b=3a => b chia hết cho 3 => tổng các chữ số của b chia hết cho 3 mà tổng các chữ số của b= tổng các chữ số của a => a chia hết cho 3. Ta có 3 chia hết cho 3, a chia hết cho 3 nên 3a chia hết cho 9 => b chia hết cho 9 => tổng các chữ số của b chia hết cho 9 => a chia hết cho 9 vì tổng các chữ số của a = tổng các chữ số của b( đpcm)
Khi đổi chỗ thì tống các chữ số của B = tổng các chữ số của A
=> A chia hết cho 3
Gọi thương của A khi chia cho 3 là C
=> C = 1/3 A mà A = 1/3 C
=> C = 1/9 B
=> B (cũng như A) chia hết cho 9