Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài, ta suy ra được B = 3A (1)
=> B chia hết cho 3.
Nhưng tổng các chữ số của A và B như nhau (vì người ta chỉ đổi vị trí).
=> A cũng chia hết cho 3. (2)
Từ 1 và 2 => B chia hết cho 9 => B chia hết cho 9 (3)
Từ 1 và 3 => B chia hết cho 27
Ta có 27 chia hết cho 9
=> B cũng chia hết cho 9
1/ Theo đề bài, Ta có : B = 3A
\(\Rightarrow\)B chia hết cho 3
2/ Tổng của các chữ số của A và B như nhau (vì chỉ đổi vị trí)
\(\Rightarrow\)A cũng chia hết cho 3
Từ 1 và 2 \(\Rightarrow\)B chia hết cho 9
Chúc e học tốt !!!!
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
Vậy là chữ số tận cùng của A là 5 (vì không thể là 0 do 3 số đầu không có tổng bằng 31 được)
Tổng 3 chữ số đầu là: 31 - 5= 26
26 = 9 + 9 + 8
Vậy số ban đầu có thể là: 998,5 hoặc 989,5 hoặc 899,5
Bài b)
Các số tự nhiên có 2 chữ số chia hết cho 9 là: 18, 27, 36, 45, 54, 63, 72, 81, 90, 99
Số tự nhiên chia 5 dư 2 có tận cùng là 2 hoặc 7
Vậy ta thấy có 27 và 72 là thoả mãn
Vậy số tự nhiên ab cần tìm là 27 hoặc 72
a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.
b/
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a.
b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3
mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2
vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6
Khi đổi chỗ thì tống các chữ số của B = tổng các chữ số của A
=> A chia hết cho 3
Gọi thương của A khi chia cho 3 là C
=> C = 1/3 A mà A = 1/3 C
=> C = 1/9 B
=> B (cũng như A) chia hết cho 9