K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Từ hệ 

=> \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)=48\)

=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)-2xyz=48\)

Mặt khác từ hệ 

\(x^2y^2z^2\left(x+y\right)\left(y+z\right)\left(x+z\right)=2160\)

=>\(48+2xyz=\frac{2160}{x^2y^2z^2}\)

=>xyz=6

Khi đó hệ 

<=>\(\hept{\begin{cases}xy\left(x+y\right)=xyz\\yz\left(y+z\right)=2xyz\\xz\left(x+z\right)=5xyz\end{cases}}\)=>\(\hept{\begin{cases}x+y-z=0\\y+z-2x=0\\x+z-5y=0\end{cases}}\)=>\(3x=2z=6y\)=>\(x=2,y=1,z=3\)

Vậy x=2,y=1,z=3

                      

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

11 tháng 7 2017

câu a)

nhân cả 3 phương trình

ta được

\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)

Vế trái là 1 số chính phương nên Vp cũng là số chính phương

6 không phải là số chính phương nên

\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6

lập bảng 

đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa

câu b)

từ hpt =>5y+3=11z+7

<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R

y  nguyên dương nên (11z+4)thuộc bội(5) và z_min

=> z=1 

=> y=3

=> x =18 (t/m)

câu c)

qua pt (1) =>x=20-2y-3z

thay vao 2) <=> y+5z=23

y;z là nguyên dương mà 5z chia hêt cho 5 

=> z={1;2;3;4}

=> y={18;13;8;3}

=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé

chọn x=2; y=3; z=4 (t/m)

Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com

11 tháng 7 2017

Bạn giải nốt giùm mình câu a được ko?

10 tháng 8 2019

Không mất tính tổng quát.

g/s : \(x\ge y\ge z\)\(\ge1\)

Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)

=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)

=> tồn tại số nguyên dương k sao cho:  \(xy+yz+zx+1=k.xyz\)

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)

=> \(k\le1+1+1+1=4\)(1)

TH1: k = 4  khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 (  tm)

TH2: k=3

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)

=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)

=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)

=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1

Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)

Vậy x=2, y=z=1 ( thử vào thỏa mãn)

TH3: k=2

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)

=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)

=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1

Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)

Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)

Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)

TH4: K=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)

=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3

Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại

Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại

Với z =3   => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)

=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)

TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)

Vậy: (x; y; z)  là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng

Ps: Cầu một cách ngắn gọn hơn! Thanks

16 tháng 1 2020

Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn