K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

28 tháng 8 2023

a) \(A\left(x\right)=3x^3-4x^4-2x^3+4x^4-5x+3\)

\(\Rightarrow A\left(x\right)=-4x^4+4x^4+3x^3-2x^3-5x+3\)

\(\Rightarrow A\left(x\right)=x^3-5x+3\)

\(B\left(x\right)=5x^3-4x^2-5x^3-4x^2-5x-3\)

\(\Rightarrow B\left(x\right)=5x^3-5x^3-4x^2-4x^2-5x-3\)

\(\Rightarrow B\left(x\right)=-8x^2-5x-3\)

b) \(A\left(x\right)+B\left(x\right)=x^3-5x+3+\left(-8x^2-5x-3\right)\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-5x+3-8x^2-5x-3\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-5x-5x+3-3\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-10x\)

\(A\left(x\right)-B\left(x\right)=x^3-5x+3-\left(-8x^2-5x-3\right)\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3-5x+3+8x^2+5x+3\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2-5x+5x+3+3\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2+6\)

11 tháng 4 2022

+ Thu gọn : 

\(A=x^4+6x^2-2x-2x^3+5x+2\)

    \(=x^4+6x^2-2x^3+3x+2\)

+ Sắp xếp giảm dần :

\(A=x^4-2x^3+6x^2+3x+2\)

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

12 tháng 4 2022

a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)

\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)

\(=x^2-9x+14\)

\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)

\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)

\(=x^6+2x^2+3\)

b) Đa thức M(x) có hệ số cao nhất là 1 

                                hệ số tự do là 14

                                bậc 2

 Đa thức N(x) có hệ số cao nhất là 1 

                            hệ số tự do là 3 

                            bậc 6

21 tháng 7 2021

a)

`P(x)=7x^3+(4x^2-3x^2)-x+5=7x^3+x^2-x+5`

`Q(x)=-7x^3-x^2+2x+(6-8)=-7x^3-x^2+2x-2`

b)

`P(x)+Q(x) = 7x^3+x^2-x+5-7x^3-x^2+2x-2`

`=(7x^3-7x^3)+(x^2-x^2)+(2x-x)+(5-2)`

`=x+3`

`P(x)-Q(x)=7x^3+x^2-x+5-(-7x^3-x^2+2x-2)`

`= 7x^3+x^2-x+5+7x^3+x^2-2x+2`

`=(7x^3+7x^3)+(x^2+x^2)-(x+2x)+(5+2)`

`=14x^3+2x^2-3x+7`

c) `A(x) = P(x)+Q(x)=x+3`

`A(x)=0 <=> x+3=0 <=>x=-3`.

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)

`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`

`= 3x^5 - 4x^2 - 7x + 2`

`b)`

`A(x)+B(x)`

`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)

`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`

`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`

`= -4x - 5`

`b)`

`A(x) - B(x)`

`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`

`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`

`= 6x^5 - 8x^2 - 10x + 9`

`c)`

Thay `x=-1` vào đa thức `A(x)`

` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`

`= 3*(-1) - 4*1 + 7 + 2`

`= -3 - 4 + 7 + 2`

`= -7+7 + 2`

`= 2`

Bạn xem lại đề ;-;.

`2,`

`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)

`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`

`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`

`= 6x^2 - x - 2 - (6x^2 - x - 1)`

`= 6x^2 - x - 2 - 6x^2 + x + 1`

`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`

`= -1`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

2:

M=6x^2+3x-4x-2-6x^2+3x-2x+1

=-1

1;

a: A(x)=3x^5-4x^2-7x+2

b: B(x)=-3x^5+4x^2+3x-7

B(x)+A(x)

=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7

=-4x-5

A(x)-B(x)

=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7

=-6x^5-8x^2-10x+9

 

3 tháng 5 2023

a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)

b,  \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)

Thay \(x=-1\) vào \(B\left(x\right)\)

\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)

\(\Rightarrow x=-1\) không là nghiệm của B(x) 

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)