Chứng tỏ đa thức M(x) ko có nghiệm, bt M(x) = 2x2 + 2x + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2x2 ≥ 0 với mọi x
➩ 2x2 + 3 ≥ 3
Hay M(x) ≥ 3
Vậy M(x) không có nghiệm
Ta có 2x2≥0 với ∀ x
3>0
=>2x2+3≥3 với ∀ x
=>2x2+3>0 với ∀ x
=>Đa thức 2x2+3 vô nghiệm
Ta có x4 \(\ge\)0 với mọi x
2x2 \(\ge\)0 với mọi x
\(\Rightarrow\)x^4-2x^2+2 \(\ge\) 2
\(\Rightarrow\) M(x) \(\ge\)2
VẬY đa thức M(x)=x^4-2x^2+2 ko có nghiệm
`M(x)=P(x)+Q(x)`
`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`
`=2x^4+6`
Đặt `M(x)=0`
`<=>2x^4+6=0`
`<=>x^4=-3`(vô lý vì `x^4>=0`)
a) Ta có M(x)=P(x)+Q(x)
=(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))
=\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)
=(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)
=\(2x^4\)+6
Vậy M(x)=\(2x^4+6\)
b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x
nên \(2x^4+6\) \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x
Vậy M(x) vô nghiệm
GIả sử M(x)=0=>2x^2.x^2+2x^2.1-3=0
=>2x^2(x^2+1)-3=0
Mà 2x^2 luôn chẵn,3 lẻ=>M(x) lẻ
Mà 0 chẵn=>điều giả sử vo lí=>m(x) ko nghiệm
a)Ta có M(x)=A(x)+B(x)
=\(x^5+2x^2-\frac{1}{2}x-3+-x^5-3x^2+\frac{1}{2}x+1\)
=\(\left(x^5-x^5\right)+\left(2x^2-3x^2\right)+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-3+1\right)\)
=\(-x^2-2\)
b)Vì \(x^2\)\(\ge\)0\(\forall\)x
=>-\(x^2\le0\forall x\)
=>\(-x^2-2\le-2\)
=>\(-x^2-2>0\)=>M(x)>0
=>M(x) không có nghiệm
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Lời giải:
Để chứng minh đa thức $M(x)$ không có nghiệm, ta chứng minh \(M(x)\neq 0, \forall x\in\mathbb{R}\). Thật vậy:
\(M(x)=2x^2+2x+3=2(x^2+x)+3=2(x^2+x+\frac{1}{4})+\frac{5}{2}\)
\(=2(x+\frac{1}{2})^2+\frac{5}{2}\geq \frac{5}{2}>0, \forall x\in\mathbb{R}\)
\(\Rightarrow M(x)\neq 0, \forall x\in\mathbb{R}\)
Do đó $M(x)$ không có nghiệm (đpcm)