K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

A B C D E H

a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:

\(AHchung\)

AB = AC 

\(\widehat{AHB}=\widehat{AHC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)

=> BH = HC ( 2 cạnh tương ứng )

b,Do BC = 8cm => BH = 4cm 

Áp dụng định lý Py ta go vào tam giác vuông ABH có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)

c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :

\(\widehat{ABH}=\widehat{ACH}\)

BH = HC

\(\widehat{BDH}=\widehat{CEH}\)

\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H

cho mình 1 tym nha

1 tháng 2 2016

:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

1 tháng 2 2016

Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC và \(\widehat{BAH}=\widehat{CAH}\)

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

17 tháng 3 2020

a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)

Có: AB=AC(gt)

Góc ABH = góc ACH(gt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=>HB=HC (2 cạnh tương ứng)

=>Góc CAH = góc BAH( 2 góc tương ứng)

b/ Ta có :HB=HC( cmt)

=> H trung điểm BC

Ta có: HB=HC=BC/2=8/2=4 (cm)

Xét tam giác ABH vuông tại H

Có AB^2= AH^2+HB^2 (pytago)

=>AH^2= AB^2-HB^2

AH^2= 5^2-4^2

AH^2=25-16

AH^2=9

AH= căng 9

=> AH= 3cm

Vậy AH=3cm

c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)

Có: AH chung

Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)

=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)

=> AD=AE ( 2 cạnh tương ứng)

=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)

Xét tam giác ABC cân tại A(gt)

Có: Góc B= (180 độ - góc A)/2 (định lí)

Xét tam giác ADE cân tại A (cmt)

Có: Góc D= (180 độ - góc A)/2 (định lí)

=> Góc B= Góc D ( =(180 độ - góc A)/2)

=> DE//BC ( 2 góc đồng vị bằng nhau)

18 tháng 4 2018

tự vẽ hình nha :

xét tam giác ABH và tam giác ACH có:

               AB=AC

              góc ABH= góc ACH

               góc AHB= góc AHC

=>tam giác abh = tam giác ach(ch-gn)

=>hb=hc=>bah=Cah

có hb=hc =bc/2=8/2=4

xét tam giác abh

ab^2=bh^2+Ah^2

=>ah^2=9=>ah=3

c)xét tam giác bdh vg tai d 

tam giác ceh vg tại e

bh=hc cm trên

góc b=góc c 

=> tam giác dbh =tam giác ech

=>db=ec

=>ad=ae=.. tam giác ade cân

tam giác abc cân tại a

tam giác ade cân tại a góc a chung =>góc ade= góc aed=góc b =bóc c

vì aed=góc c=>de//bc đồng vị

27 tháng 5 2019

Bài này dài thật đấy

Thi mà cho bài này thì làm xong chắc hết thời gian luôn quá

Chúc học tốt nha leminhthuan.

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)

Trả lời:

a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB = AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB = HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)

b) Ta có: HB = HC = BC2=82=4(cm)BC2=82=4(cm)

ΔABHΔABH vuông tại H, theo định lí Py-ta-go

Ta có: AB2 = AH2 + HB2

=> AH2 = AB2 - HB2

AH2 = 52 - 42

AH2 = 9

Vậy: AH = 9–√=3(cm)9=3(cm)

c) Xét hai tam giác vuông BDH và CEH có:

HB = HC (cmt)

Bˆ=CˆB^=C^ (do ΔABCΔABC cân tại A)

Vậy: ΔBDH=ΔCEH(ch−gn)ΔBDH=ΔCEH(ch−gn)

Suy ra: HD = HE (hai cạnh tương ứng)

Do đó: ΔHDEΔHDE cân tại H

                      ~Học tốt!~