K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

a, Do \(NA=NB=\frac{1}{2}AB\)

\(AM=MC=\frac{1}{2}AC\)

Mà \(AB=AC\)\(\Rightarrow NA=MA;NB=MC\)\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)

b, Xét \(\Delta ANC\)và \(\Delta AMB\)có:

\(\widehat{BAC}chung\)

\(AB=AC\)

\(AN=AM\)(câu a)

\(\Rightarrow\Delta ANC=\Delta AMB\)

\(\Rightarrow BM=CN\)

c, Xét \(\Delta NBC\) và\(\Delta MCB\) có:

\(BCchung\)

NB = MC ( câu a)

NC = MB ( câu b)

=>\(\Delta NBC=\Delta MCB\)=>\(\widehat{GBC}=\widehat{GCB}\)=>\(\Delta GBC\) cân tại C

TYM cho chị nhé <3

16 tháng 3 2017

kết quả là 54 cm

16 tháng 3 2017

54 đó chắc 100% luôn

a: Xét ΔABM và ΔACN có 
AB=AC

\(\widehat{BAM}\) chung

AM=AN

Do đó: ΔABM=ΔACN

Suy ra: BM=CN

b: Xét ΔNBC và ΔMCB có 

NB=MC

NC=MB

BC chung

Do đó: ΔNBC=ΔMCB

Suy ra: \(\widehat{GNB}=\widehat{GMC}\)

Xét ΔGNB và ΔGMC có 

\(\widehat{GNB}=\widehat{GMC}\)

NB=MC

\(\widehat{GBN}=\widehat{GCM}\)

Do đó: ΔGNB=ΔGMC

17 tháng 4 2016

a)

ta có: AB=AC suy ra 1/2 AB=1/2AC suy ra AN=NB=AM=MC

xét tam giác ABM và tam giác ACN có:

AB=AC

AM=AN(cmt)

A(chung)

suy ra tam giác ABM=ACN(c.g.c)

suy ra BM=CN

b)

ta có: I là trọng tâm cua tam giác ABC 

ta có: MB=NC(theo câu a) suy ra 2/3MB=2/3NC suy ra IB=IC suy ra tam giac IBC cân tại I

c)

xét tam giác AIB và tam giác AIC có:

AB=AC

AI(chung)

IB=IC

suy ra tam giác AIB=AIC(c.c.c)

suy ra BAI=CAI

suy ra AI là phân giác của góc A

17 tháng 4 2016

A B C I N M

a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)

AN+NC=AC(N nằm giữa A và C)

mà MB=NC(gt)

và AB=AC(ΔABC cân tại A)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)

mà hai góc này là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác MNBC có MN//BC(cmt)

nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

c) Xét ΔAMN có 

E là trung điểm của AM(gt)

F là trung điểm của AN(gt)

Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)

Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà MN//BC(cmt)

nên EF//BC(3)

Xét hình thang MNCB(MN//CB) có 

H là trung điểm của MB(gt)

G là trung điểm của NC(gt)

Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)

Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)

Từ (3) và (4) suy ra EF//HG

Ta có: HG//BC(cmt)

nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{EHG}=\widehat{FGH}\)

Xét tứ giác EFGH có EF//HG(cmt)

nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)

Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)

nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)

1 tháng 11 2021

A B C M N I E

a)

*AMN cân

Vì t/g ABC cân tại A (gt)

=>^B=^C

Do đó: ^ABM=^ACN

Xét t/ABM và t/gACN có

góc ^A chung

AB=AC ( vì t/g ABC cân)

^ABM=^ACN (cmt)

Nên t/gABM=t/gACN (g.c.g)

=>AM=AN (2 cạnh tương ứng = nhau)

=> tam giác ANM cân

*MN//BC

Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o

      tam giác ABC cân nên=>^A+^B+^C=180o

Mà ^B=^C 

      ^ANM=^AM 

Nên: ^C=^ANM

=>^MCN=^ANM

Mà 2 góc này lại ở vị trí so le trong

Do đó MN//BC (đpcm)

b) 

Vì t/g ABC cân tại A

^ABC=^ACB

Mà BM là tia p/g của ^ABC

      CN là tia p/g của ^ACB

do đó: ^MBC=^NCB

=> tam giác EBC cân tại E

Xét t/g AEB và t/g AEC có:

AB=AC (vì t/g ABC cân)

^ABM=^ACN (cmt)

=BE=CE (EBC cân)

=> t/gAEB=t/gAEC(c.g.c)

=>^BAE=^CAE (2 góc tương ứng = nhau)

Do đó AE là tia phân giác của t/gBAC (1)

Xét t/g AIB và t/gAIC có

AB=AC ( vì t/g ABC cân)

IB=IC (I là trung điểm BC)

=>tam giác AIB=t/gAIC (c.g.c)

=>^IAB=^IAC (2 góc tương ứng = nhau)

Do đó:AI là tia phân giác của ^BAC (2)

Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).

5 tháng 3 2017

CM BNC=CMB

MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung

\(\Rightarrow\)BM=CN

CM ABM=ACN

AB=AC ; AM=AN ; \(\widehat{A}\) chung

\(\Rightarrow\)ABM  =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)

b     \(\widehat{ABM}=\widehat{ACN}\)  \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\)

    \(\Rightarrow\)   \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)

Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)

\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân

c,  Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)      
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A

d,      xét BAD và CAD

góc BAI = CAI ; AB=AC ; AD chung 

\(\Rightarrow\)góc ADB = ADC  mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90

9 tháng 3 2018
Ta có : AB = AC ( tam giác ABC cân tại A) mà M, N lần lượt là trung điểm của AC và AB suy ra AN = AM Xét tam giác ABM và tam giác ACN có : Góc A : góc chung AM = AN ( cmt) AB = AC ( tam giác ABC cân tại A) Suy ra tam giác ABM = tam giác ACN ( c - g - c) Suy ra BM = CN ( 2 cạnh t/ứng) b/ Có tam giác ABM = tam giác ACN ( theo câu a) Suy ra góc ABM = góc ACN ( 2 góc t/ứng) Có góc ABM + góc MBC = góc B Góc ACN + góc NCB = góc C mà góc B = góc C (tam giác ABC cân tại A), góc ABM = góc ACN ( cmt) suy ra góc IBC = góc ICB suy ra tam giác IBC cân tại I c/ Có tam giác IBC cân tại B ( theo câu b) suy ra IB = IC Xét tam giác AIB và tam giác AIC có : AI : cạnh chung AB = AC (tam giác ABC cân tại A) IB = IC ( cmt) Suy ra tam giác AIB = tam giác AIC ( c - c - c) Suy ra góc BAI = góc CAI ( 2 góc t/ứng) mà AI nằm giữa 2 tia AB và AC Suy ra AI là tia phân giác góc A d/ Gọi H là giao điểm của AI và BC Xét tam giác AHB và tam giác AHC có : Góc B = góc C ( tam giác ABC cân tại A) AB = AC ( tam giác ABC cân tại A) Góc BAI = góc CAI ( AI là tia phân giác góc A) Suy ra tam giác AHB = tam giác AHC ( g - c - g) Suy ra góc AHB = góc AHC( 2 góc t/ứng) mà góc AHB + góc AHC = 180 độ suy ra AHB = 90 độ suy ra AI vuông góc với BC Bạn tự vẽ hình nhé
6 tháng 3 2018

minh can gap ik

Tại sao các ca sĩ thường đến phòng thu âm chuyên dụng để thu bài hát chứ không thu tại nhà hát hay sân khấu?