a, số nguyên n phải thoả mãn điều kiện gì để phân số A tồn tại ?
b, tìm n để A có giá trị nguyên .
A = \(\frac{3n-5}{n+4}\)( n thuộc N* )
GIÚP MIK VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
a) n phải thuộc Z
b)A=\(\frac{13}{0-1}\)=\(\frac{13}{-1}\)=(-13) khi n=0
A=\(\frac{13}{5-1}\)=\(\frac{13}{4}\) khi n=5
A=\(\frac{13}{7-1}\)=\(\frac{13}{6}\) khi n=7
c)để a là số nguyên thì n-1=13k(k thuộc Z)
=>n=13k+1(k thuộc Z)
Bài làm
a) Để A là phân số tồn tại thì: n + 2 khác 0
=> n khác -2
Vậy để A là phân số tồn tại thì n thuộc Z = { -2 }
b) Ta có: n = -2 thì
A = -7/-2 + 2 = -7/0 ( vô lí vì theo đk thoả mãn )
Ta có: n = -4 thì
A = -7/-4+2 = -7/-2 = 7/2
Ta có: n = 12 thì
A = -7/12+2 = -7/14 = -1/2
Vậy khi n = -2 thì A không tồn tại
n = -4 thì A = 7/2
n = 12 thì A = -1/2
c) Để A là số nguyên
<=> -7 phải chia hết cho n + 2
<=> n + 2 thuộc Ư(-7) = { 1;-1;7;-7 }
Ta có: Khi n + 2 = 1 => n = -1
Khi n + 2 = -1 => n = -3
Khi n + 2 = 7 => n = 5
Khi n + 2 = -7 => n = -9
Vậy để A là số nguyên thì n = { -1;-3;5;-9}
a) điều kiện phân số A tồn tại là :
\(n-1\ne0\Rightarrow n\ne1\)
b)\(+n=0\Rightarrow\frac{13}{0-1}=-13\).
\(+n=5\Rightarrow\frac{13}{5-1}=\frac{13.}{4}\)
\(+n=-7\Rightarrow\frac{13}{-7-2}=\frac{13}{-9}.\)
c)để A là số nguyên
\(\Rightarrow13⋮n-1\Rightarrow13.\left(n-1\right)+12\)
\(\Rightarrow n-1\inƯ\left(12\right)=[\pm1;\pm2;\pm3;\pm4;\pm6;\pm12]\)
\(\Rightarrow\)n-1=1\(\Rightarrow\)n=2
n-1=-1\(\Rightarrow\)n=0
n-1=2\(\Rightarrow\)n=3
n-1=-2\(\Rightarrow\)n=-1
n-1=3\(\Rightarrow\)n=4
n-1=-3\(\Rightarrow\)n=-2
n-1=4\(\Rightarrow\)n=5
n-1=-4\(\Rightarrow\)n=-3
n-1=6\(\Rightarrow\)n=7
n-1=-6\(\Rightarrow\)n=-5
n-1=12\(\Rightarrow\)n=13
n-1=-12\(\Rightarrow\)n=-11
a, Để A là phân số thì n-1\(\ne\) 0
=> n\(\ne\) 1
b, Có : \(A=\frac{4}{n-1}\)
Để A có giá trị nguyên => n-1 \(\in\) Ư(4) = {1;2;4;-1;-2;-4}
Ta có bảng sau
n-1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | 3 | 5 | 0 | -1 | -3 |
vậy để A là số nguyên thì n \(\in\) {2;3;5;0;-1;-3}
a, Để A là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b, \(\frac{3n-5}{n+4}\in Z\Rightarrow\frac{3n+12-17}{n+4}\in Z\Rightarrow\frac{3\left(n+4\right)-17}{n+4}\in Z\)
\(\Rightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Rightarrow3-\frac{17}{n+4}\in Z\)
Mà \(3\in Z\Rightarrow\frac{17}{n+4}\in Z\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
TH1: n + 4 = -1 => n = -1 - 4 = -5
TH2: n + 4 = 1 => n = 1 - 4 = -3
TH3: n + 4 = -17 => n = -17 - 4 = -21
TH4: n + 4 = 17 => n = 17 - 4 = 13
Mặt khác \(n\inℕ^∗\Rightarrow n=13\) mới có thể thỏa mãn.