K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.a)     Tính BC?b)    Chứng minh tam giác ABI=tam giác HBIc)     Chứng minh BI là đường trung trực của đoạn thẳng AHd)    Chứng minh IA<ICe)     Chứng minh I là trực tâm tam giác ABCBài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.

a)     Tính BC?

b)    Chứng minh tam giác ABI=tam giác HBI

c)     Chứng minh BI là đường trung trực của đoạn thẳng AH

d)    Chứng minh IA<IC

e)     Chứng minh I là trực tâm tam giác ABC

Bài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.

a)     Cho AB=5cm, AC=7cm, tính BC?

b)    Chứng minh tam giác ABE=tam giác DBE?

c)     Gọi F là giao điểm của DE và BA, chứng minh EF=EC

d)    Chứng minh BE là trung trực của đoạn thẳng AD

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

5
1 tháng 5 2019

C1 : 

a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)

                                  Thay số:BC2=62+82

                                                BC2=36+64=100

                                              =>BC=10(cm)

b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2

Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:

                             Bi chung, góc ABI= góc HBI ( cmt)

=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)

c)Gọi giao của AH và BI là K 

Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)

Xét tam giác AKB và tam giác HKB có:

AB=HB (cmt)

góc ABK=góc HBK(cmt)

BK chung

=. tam giác AKB= tam giác HKB ( c.g.c)

=> KB=KH ( 2 cạnh tương ứng)

=> K là trung điểm của BH (1)

Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK  hay AH vuông góc với BI(2)

Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH

                            


 
1 tháng 5 2019

C2 : 

a)ÁP DỤNG ĐỊNH LÝ PYTAGO THUẬN TRÒG TAM GIÁC ABC (BAC = 90 ĐỘ ) CÓ :

AB+AC2=BC2

=>52+72=BC2

=>BC2=25+49=74

HAY BC = CĂN BẬC HAI 74 =8.6 (CM)

b)XÉT HAI TAM GIÁC ABE (BAE = 90 ĐỘ ) VÀ TAM GIÁC DBE (BDE=90 ĐỘ ) CÓ :

AB=BD (GT)

BE LÀ CẠNH HUYỀN CHUNG

=>TAM GIÁC ABE = TAM GIÁC DBE (CẠNH HUYỀN _CẠNH GÓC VUÔNG )

C ) DO TAM GIÁC ABE = TAM GIÁC DBE (CÂU B ) 

=>AE=DE (2 CẠNH TƯƠNG ỨNG )

XÉT HAI TAM GIÁC AEF (EAF = 90 ĐỘ ) VÀ TAM GIÁC DEC (EDC = 90 ĐỘ ) CÓ :

E1 =E2

AE=DE (CMT)

=>TAM GIÁC AEF=TAM GIÁC DEC (CGV _ GÓC NHỌN KỀ )

=>ÈF=EC (2 CẠNH TƯƠNG ỨNG)


 

12 tháng 3 2018
a/ Áp dụng định lý Py - ta - go cho t/g ABC vuông tại A , có : Bc^2 = AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100 = 10^2 Suy ra BC = 10 b/Ta có : góc IAB+ góc IBA+ góc BIA = 180 độ Có : góc IHB + góc IBH + góc BIH = 180 độ Suy ra góc IAB + góc IBA + góc BIA = góc IHB + góc IBH + góc BIH Mà góc IAB = góc IHB = 90 độ góc IBA = góc IBH ( BI là tia p/g góc B) Suy ra góc BIA= góc BIH Xét t/g ABI và t/g HBI có : Góc BIA = góc BIH(cmt) BI : cạnh chung Góc IBA = góc IBH ( BI là tia p/g góc B) Suy ra t/g ABI = t/g HBI ( g - c - g ) c/ Có t/g ABI = t/g HBI ( theo phần b) Suy ra AI = HI (2 cạnh t/ứng) Gọi M là giao điểm của BI và AH Xét t/g AIM và t/g HIM có : MI : cạnh chung Góc AIM = góc HIM ( c/m câu a) AI = HI ( cmt) Suy ra t/g AIM = t/g HIM ( c - g - c ) Suy ra AM = HM (1) và góc AMI = góc HMI ( 2 góc t/ứng) mà góc AMI + góc HMI = 180 độ (2 góc kề bù) Suy ra góc AMI = 90 độ suy ra BI vuông góc với AH (2) Từ (1) và (2) suy ra BI là đường trung trực của AH d/ Áp dụng đ/l Py - ta - go cho t/g IHC vuông tại H có : HI^2 = IC^2 - IC^2 suy ra HI
12 tháng 3 2018

a/ \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pythagore)

=> BC2 = 62 + 82

=> BC = \(\sqrt{6^2+8^2}\)

=> BC = \(\sqrt{100}\)= 10 (cm)

b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là phân giác \(\widehat{B}\))

Cạnh huyền BI chung

=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)