Cho tam giác ABC vuông tại A. Gọi M,N lần lượt là trung điểm của AC và BC.
a) Chứng minh rằng tứ giác AMNB là hình thang vuông.
b)Gọi I là giao điểm của BM và AN. Trên tia đối của tia NA lấy điểm E sao cho sao cho
NE = NI. Trên tia đối của tia MB lấy điểm F sao cho MF = MI. Chứng minh rằng EF // AB.
c) Gọi H là trung điểm cảu AB, K là trung điểm của EF. Chứng minh rằng bốn điểm
C,K,I,H thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AB
hay AMNB là hình thang
mà \(\widehat{MAB}=90^0\)
nên AMNB là hình thang vuông
a: Xét ΔMBE vuông tại E và ΔNCF vuông tại F có
MB=CN
\(\widehat{MBE}=\widehat{NCF}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBE=ΔNCF
Suy ra: ME=NF
Xét ΔMEI vuông tại E và ΔNFI vuông tại F có
ME=NF
\(\widehat{EMI}=\widehat{FNI}\)
Do đó: ΔMEI=ΔNFI\(\left(cgv-gnk\right)\)
Suy ra: IE=IF
b: Ta có: CD=CN
mà CN=MB
nên MB=DC
Xét ΔBAC có
\(\dfrac{MB}{BA}=\dfrac{CD}{AC}\)
nên MD//BC
Xét tứ giác BMDC có MD//BC
nên BMDC là hình thang
mà \(\widehat{MBC}=\widehat{DCB}\)
nên BMDC là hình thang cân
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Matha: Xét tứ giác ADHE có
HD//AE
HD=AE
Do đó: ADHE là hình bình hành
mà AD=AE
nên ADHE là hình thoi
\(a,\left\{{}\begin{matrix}AM=MC\\BN=NC\end{matrix}\right.\Rightarrow MN\) là đtb tam giác ABC
\(\Rightarrow MN//BC\Rightarrow AMNB\) là hthang
\(b,\left\{{}\begin{matrix}IN=NE\\IM=MF\end{matrix}\right.\Rightarrow MN\) là đtb tam giác IEF
\(\Rightarrow MN//EF\)
Mà \(MN//BC\Rightarrow EF//BC\)