K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

ta có

A=10^n+72n-1=10^n-1+72n

10^n-1=99..9(có n-1 số n)=9.(11...1) có n số1

A=10^n-1+72n+9x(11..1)+72n suy ra A chia hết cho 9= 11..11+8n=11.11-n+9n

ta thấy 11..1 có n số 1 có tổng các chữ số là n 

suy ra 11..1-n chia hết cho 9 

tick nha

23 tháng 11 2015

Ta có :

Cho biểu thức tính trên là A

A = 10 n + 72n ‐ 1 = 10 n ‐ 1 + 72n

10 n ‐ 1 = 99...9 ﴾có n‐1 chữ số 9﴿ = 9x﴾11..1﴿ ﴾có n chữ số 1﴿

A = 10 n ‐ 1 + 72n = 9x﴾11...1﴿ + 72n => A : 9 = 11..1 + 8n = 11...1 ‐n + 9n

Ta thấy: 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 ‐ n chia hết cho 9

=> A : 9 = 11..1 ‐ n + 9n chia hết cho 9

Vậy A chia hết cho 81 

28 tháng 5 2021

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

15 tháng 12 2015

Bạn tham khảo cách giải trong câu hỏi tương tự nha !!!

24 tháng 11 2015

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
Ta có:

10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9

=>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81

=>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81

=>đpcm.

20 tháng 11 2018

10n+72-1=10n-1-9n+81n

=999.....99(n chữ số)-9n+81n

=9(1111...1(n chữ số)+n)+81n

Ta dễ thấy rằng 111..1(n chữ số) và n có cùng số dư khi chia cho 9

nên 1111...1(n chữ số)-n chia hết cho 9

=> 9(111...1(n chữ số)-n) chia hết cho 81

Mà 81n cũng chia hết cho 81

=> 10n+72n-1 chia hết cho 81 với 

n E N

20 tháng 11 2018

như shitbo đó,tk mk vs nha,please

13 tháng 12 2016

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n
10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
=> A chia hết cho 81

28 tháng 12 2018

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n

10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9

=> A : 9 = 11..1 - n + 9n chia hết cho 9

=> A chia hết cho 81

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.