Tìm số tự nhiên m sao cho: 6m chia hết cho 2m – 1.
giúp mình vớiiiiii
huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2m+18 chia hết cho m+1
=> 2m+2+16 chia hết cho m+1
=> 2.(m+1)+16 chia hết cho m+1
=> 16 chia hết cho m+1
=> m+1\(\in U\left(16\right)\)
Vì m là số tự nhiên
=> m> -1
=> m+1>0
=> m+1=1;2;4;8;16
=> m= 0;1;3;7;15
Ta có: 2m+18 chia hết cho m+1
=>2m+2+16 chia hết cho m+1
=>2.(m+1)+16 chia hết cho m+1
=>16 chia hết cho m+1
=>m+1=Ư(16)=(1,2,4,8,16)
=>m=(0,1,3,7,15)
Chọn đáp án C.
Thử lại, với m= 4 thì P =3 ( thỏa mãn)
Với m = 0 thì P = -1 ( không là số tự nhiên).
Với m = 9 thì P = 2 ( thỏa mãn)
Vậy m = 4 hoặc m = 9.
Ta có: n+1 chia hết cho 165
=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}
=> n = { -1 ; 164 ; 329 ; 494;659;............}
Vì n chia hết cho 21
=> n =
2n + 5 chia hết cho n + 1
n +1 chia hết cho n + 1
=> 2( n +1 ) chia hết cho n + 1
=> 2n + 2 chia hết cho n + 1
=> 2n + 5 - 2n - 2 chia hết cho n+1
=. 3 chia hết cho n+ 1
=> n + 1 thuộc ước của 3
6m⋮2m−16m⋮2m−1
⇔2m−1∈{−1;1;3}⇔2m−1∈{−1;1;3}
⇔2m∈{0;2;4}⇔2m∈{0;2;4}
hay m∈{0;1;2}
^HT^
6m⋮2m−16m⋮2m−1
⇔2m−1∈{−1;1;3}⇔2m−1∈{−1;1;3}
⇔2m∈{0;2;4}⇔2m∈{0;2;4}
hay m∈{0;1;2}
n + 5 chia hết cho n + 1
n + 1 + 4 chia hết cho n + 1
4 chia hết cho n + 1
n + 1 thuộc Ư(4) = [1;2;4}
n thuộc {0 ; 1 ; 3}
Lời giải:
$n^3+3n+1\vdots n+1$
$\Rightarrow (n^3+1)+3n\vdots n+1$
$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$
$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn)
$\Rightarrow n\in \left\{0; 2\right\}$
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
\(6m⋮2m-1\)
\(\Leftrightarrow2m-1\in\left\{-1;1;3\right\}\)
\(\Leftrightarrow2m\in\left\{0;2;4\right\}\)
hay \(m\in\left\{0;1;2\right\}\)
m = 5