K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

Đặt \(n^2+2n+12=a^2\)

\(\Rightarrow\left(n^2+2n+1\right)+11=a^2\)

\(\Rightarrow\left(n+1\right)^2-a^2=-11\)

\(\Rightarrow\left(n+1-a\right)\left(n+1+a\right)=-11\)

Đến đây bạn xét ước của 11 nên tìm ra n dễ dàng.

P/S:Câu b tương tự.

24 tháng 4 2019

a, Đặt \(n^2+2n+12=k^2\left(k\in N\right)\)

\(\Rightarrow\left(n^2+2n+1\right)+11=k^2\Rightarrow k^2-\left(n+1\right)^2=11\)

\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\)

Ta thấy: \(k+n+1>k-n-1\) và \(k+n+1;k-n-1\in N\)

\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\cdot1\)

Với \(k+n+1=11\Rightarrow k=6\)

Thay vào ta có: \(k-n-1=1\Rightarrow6-n-1=1\Rightarrow n=4\)

17 tháng 7 2016

Đặt \(A=n^2-4n+7\) .

1. Với n = 0 => A = 7 không là số chính phương (loại)

2. Với n = 1 => A = 4 là số chính phương (nhận)

3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)

\(\Rightarrow\left(n-2\right)^2< A< n^2\)

Vì A là số tự nhiên nên  \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)

Thử lại, n = 3 => A = 4 là một số chính phương.

Vậy : n = 1 và n = 3 thoả mãn đề bài .

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

10 tháng 12 2023

Số số hạng của A:

(2n - 1 - 1) : 2 + 1 = (2n - 2) : 2 + 1

= n - 1 + 1

= n

A = (2n - 1 + 1) . n : 2

= 2n . n : 2

= 2n² : 2

= n²

Vậy A là số chính phương (vì n ∈ ℕ)

10 tháng 12 2023

A = 1 + 3 + 5 + ... + (2n - 1)

Dãy số trên là dãy số cách đều với khoảng cách là: 

          3 - 1 = 2 

Số số hạng của dãy số trên là:

    (2n - 1 - 1) : 2 + 1 = n 

A = (2n - 1 + 1).n : 2 

A = 2n.n : 2

A = n2

Vậy A là số chính phương ( đpcm vì A là bình phương của một số tự nhiên)

3 tháng 3 2016

bạn có thể giải chi tiết ra được không

15 tháng 3 2020

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

24 tháng 3 2020

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

9 tháng 1 2017

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

9 tháng 1 2017

cảm ơn bạn nhiều !!