Cho tam giác ABC vuông tại B, đường phân giác AD( D thuộc BC ). kẻ BO vuông góc với AD ( O thuộc AD ), BO cắt AC tại E. Chứng minh:
a) Tam giác ABO= tam giác AEO
b) Tam giác BAE cân
c) AD là đường trung trực của BE.
d) Kẻ BK vuông góc với AC ( K thuộc AC ). Gọi M là giao điểm của BK với AD. Chứng minh rằng ME song song với BC.
a) Tam giác ABO và tam giác AEO có:
Góc AOB = góc AOE (=90 độ)
Góc BAO = góc EAO (AO là phân giác góc BAE)
Cạnh AO chung
=> tam giác ABO = tam giác AEO (g-c-g) (1)
b) Từ (1) => AB = AE => tam giác BAE cân tại A (2)
c) Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE
=> AD là đường trung trực của BE
d) Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.
Gọi H là giao điểm của EM và AB => EH đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE
=> EM vuông góc AB
mà BC vuông góc AB (gt)
=> EM // BC