K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

@={:::::::::::::::::::>

31 tháng 8 2018

A=2^40-2^36=2^36.2^4-2^36=2^36(2^4-1)=15x 2^36

15: 3 =5 => A chia hết 3

31 tháng 8 2018

\(2^{40}-2^{36}=2^{36}\left(2^4-1\right)=2^{36}\left(16-1\right)=2^{36}.15=2^{36}.5.3⋮3\)

Vậy \(2^{40}-2^{36}⋮3\)

Chúc bạn học tốt ~ 

4 tháng 8 2017

A= 4+2^2+2^3+....+2^2015

\(\Rightarrow\)2A=8+2^3+2^4+...+2^2016

\(\Rightarrow\)   2A-A=8+2^3+2^4+....+2^2016 - 4 - 2^2 - 2^3 -.....- 2^2015

\(\Rightarrow\)A=8+2^2016 - 4 - 2^2

\(\Rightarrow\)A=2^2016

Vậy A là lũy thừa của 2

29 tháng 4 2020

Vì BE = AB (gt) => △ABE cân tại B => AB = BE và BAE = BEA

Vì EK ⊥ AC (gt) mà AB ⊥ AC 

=> EK // AB (từ vuông góc đến song song)

=> KEA = BAE 

Mà BAE = BEA (cmt)

=> KEA = BEA

Xét △HAE vuông tại H và △KAE vuông tại K

Có: AE là cạnh chung

      HEA = KEA (cmt)

=> △HAE = △KAE (ch-gn)

=> AH = AK (2 cạnh tương ứng)

Xét △EKC vuông tại K có: KC < EC (quan hệ cạnh)

Ta có: AC = AK + KC = AH + KC < AH + EC

Xét △HBA vuông tại H có: AH < AB (quan hệ cạnh)

Ta có: AH + BC = AH + EC + BE > AC + BE = AC + AB 

i don't now

mong thông cảm !

...........................

25 tháng 7 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

nhiều qá lm sao nổi

6 tháng 8 2019

*Vẽ các trung tuyến BN, CE lần lượt tại B và C. Gọi G là trọng tâm của \(\Delta ABC\)..Nối MN

Áp dụng BĐT tam giác vào \(\Delta AMN\), ta được:

\(AM< AN+NM\)(1)

Mà \(AN=\frac{1}{2}AC\)(Do BN là trung tuyến ứng với cạnh AC)                 (2)

và \(MN=\frac{1}{2}AB\)(Do MN là đường trung bình ứng với cạnh \(AB\)của \(\Delta ABC\))                   (3)

Từ (1), (2) và (3) suy ra \(AM< \frac{1}{2}AB+\frac{1}{2}AC\)

hay \(AM< \frac{1}{2}\left(AB+AC\right)\)         (đpcm)